Stormwater Control Plan

For

Fort Ord Regional Trail and Greenway

Submitted to: Transportation Agency for Monterey County (TAMC) City of Seaside and City of Del Rey Oaks

Date: 12/16/22

Revised: 6/16/2023

Prepared by: Whitson Engineers 6 Harris Court Monterey, CA 93940

Phone: (831) 649-5225

Prepared for: Transportation Agency for Monterey County 55-B Plaza Circle Salinas, CA 93901

Phone: (831) 775-4416

Table of Contents

I.	Project Data	. 4
II.	Project Setting	. 5
II.A.	Project Location and Description	. 5
II.B.	Post-Construction Performance Requirements	. 5
	Jurisdictional Overview	. U 6
11	.C.1. City of Seaside	. 6
II.	C.2. City of Del Rey Oaks	. 6
	.C.3. Caltrans (State Route 218)	. 6
II.D.	Existing Site	0. 6
II.F.	Soils and Infiltration.	. 9
II.G	. Setbacks to Structures and Slopes	10
II.H	Domestic Water Wells.	10
II.I. II.I	Utilities and Easements	10
II.K.	Other Opportunities and Constraints for Stormwater Control	10
III.	Performance Requirement No. 1 (Tier 1): Site Design and Runoff Reduction	11
III.A	Design Strategies to Optimize Site Layout for Water Quality	11
II	I.A.1. Limitation of development envelope	11
II	I.A.2. Preservation of natural drainage features.	11
	I.A.3. Setbacks from creeks, wetlands, and riparian habitats	11 11
III.B	Minimum Required Tier 1 Measures.	11
IV.	Post-Construction Drainage Design (Tier 2-4)	12
IV	/.A.1. Exempt Areas	12
١١	/.A.2. Self-Treating Areas (STAs)	12
١١	/.A.3. Self-Retaining Areas (SRAs)	13
V.	Stormwater Control Measures (SCMs)	13
V.A	. Summary of Proposed Stormwater Control Measures	13
V.B	Stormwater Control Measure Sizing Calculations	14
V V	.B.1. PCR 2 – Water Quality Treatment Calculations	14 17
V	.B.3. Tier 4 – Peak Flow Management and Flood Control	18
VI.	Site Source Control	18
VI.A	A. Site activities and potential sources of pollutants	18
VII.	Structural Control Measures (SCM) Operations and Maintenance	20
VII.	A. Ownership and Responsibility for SCM Maintenance in Perpetuity	20
VII.I	B. Summary of SCM Operations and Maintenance Requirements for Each SCM	20
VIII.	SCM Construction Plan Set Checklist	20
IX.	Certification	21

Tables

Table 1. Project Data	4
Table 2. Trail Segments within FEMA Zone AE	7
Table 3. NRCS Soil Survey Soil Groups Characteristics	9
Table 4. Tier 1 Measures	11
Table 5. Exempt New and Replaced Impervious Areas	12
Table 5A. Self Treating Areas	13
Table 6. Summary of Proposed SCM's	14
Table 7. Bioretention Sizing Calculation for SCM 2d	15
Table 8. SCM 10a Equivalent Impervious Area (EIA) Calculation	16
Table 9. SCM 11c Equivalent Impervious Area (EIA) Calculation	16
Table 10. SCM 12a Equivalent Impervious Area (EIA) Calculation	16
Table 11. Tree Box Biofilter Sizing Calculation	17
Table 12. Retention Volumes Required and Provided	18
Table 13. Routing Method Criteria	18
Table 14. Peak Discharge Comparison	18
Table 15. Potential Pollutant Sources and Source Controls	19
Table 16: Construction Plan Checklist	20

Attachments

- A Watershed Management Zone and Groundwater Basin Map
- B Precipitation
- C Soils
- D Hazards
- E DMA Exhibits and Table
- F SCM Tables
- G Central Coast SCM Calculator
- H HEC-HMS Model Inputs and Results

I. Project Data

Project Name/Number	Fort Ord Recreational Trail and Greenway					
Project Location	Cities of Seaside & Del Rey Oaks; State Route 218; and Frog Pond Regional Park					
Project Phase	1					
Project Type	Construct a 1.5 mile-long paved bicycle and pedestrian trail.					
Total Regulated Project Area (TRA)	131,200 sf					
Total Exempt Project Area (TEA)	87,200 sf					
Total Project Area (TPA = TRA + TEA)	218,400 sf					
Total Existing Impervious Surface Area (TEI, sum of all impervious surfaces across the total project area)	99,500 sf ¹					
Total Replaced Impervious Surface Area (TRI)	92,700 sf					
Total "New" impervious Surface Area (TNI)	72,900 sf					
Total Post-Project Impervious Surface Area (TIA)	165,600 sf ¹					
Reduced Impervious Area Credit (RIAC=TEI–TIA, RIAC=0 when TIA>TEI)	0					
Net Impervious Area (NIA = TIA – RIAC, Total Post-Project Impervious Surface Area less Reduced Impervious Area Credit, if any)	165,600 sf ¹					
Performance Requirement No. (Tiers)	1, 2, 3, 4 and local jurisdiction requirements					
Watershed Management Zone(s)	1					
Design Storm Frequency and Rainfall Depth (inches) or Rainfall Intensity (inches/hr)	85th percentile rate = 0.2 in/hr 85th percentile, 24-hour depth = 0.8 in 95th percentile, 24-hour depth = 1.3 in 2-year, 24-hour depth = 1.82 in					
	10-year, 24-hour depth = 2.90 in					

Table 1. Project Data

¹Total areas are given for the Project Area, rather than the Parcel Area, since project spans multiple parcels and rights of way

II. Project Setting

II.A. Project Location and Description

The Fort Ord Regional Trail and Greenway project is a proposed 28-mile paved bicycle and pedestrian route through parks, and open spaces connecting the city of Seaside, Marina, Del Rey Oaks and Monterey. This Phase 1 project is composed of a 1.5-mile segment beginning at the intersection of Canyon Del Rey and North Fremont Street in the City of Seaside. The trail will run along State Route (SR) 218 to Work Memorial Park; then through the park to Angelus Way; then along Angelus Way to Del Rey Park; then through Del Rey Park to SR 218; then cross under SR 218 to the Frog Pond Wetland Preserve; then up Carlton Drive to Plumas Avenue, and along Plumas Avenue to Noche Buena Street.

The following relevant reports have been prepared for this project and are referenced in this Stormwater Control Plan:

• Geotechnical Data Report, by Mc Millen Jacobs Associates, dated 11/2021

The following other jurisdictional/regulatory agency permits are anticipated for this project (select the boxes for all permits that apply or select None):

Construction General Permit, State Water Resources Control Board (CGP, SWRCB)

- Coastal Development Permit, California Coastal Commission
- California Fish & Wildlife, 1602 Streambed Alteration Permit
- □ Clean Water Act Section 10 Permit, US Army Corps of Engineers
- I Clean Water Act Section 404 Permit, US Army Corps of Engineers
- E Clean Water Act Section 401 Permit, Regional Water Quality Control Board
- □ Waste Discharge Requirements, Regional Water Quality Control Board ☑ Other (identify):
 - City of Seaside Encroachment Permit
 - City of Del Rey Oaks Encroachment Permit
 - Caltrans Encroachment Permit
 - Monterey Peninsula Regional Parks District Encroachment Permit
 - Coastal Development Permit, City of Seaside (or Exemption)

□ None are applicable to this Project.

II.B. Post-Construction Performance Requirements

This project is subject to the following Post-Construction Performance Requirements:

- PR1/Tier 1: Site Design and Runoff Reduction
- PR2/Tier 2: Water Quality Treatment
- PR3/Tier 3: Runoff Retention
- PR4/Tier 4: Peak Management
- □ PR5/Tier 5: Special Circumstances [specify type]
- Other: Agency requirements
 - Caltrans Highway Drainage and MS4 Permit Requirements
 - City of Seaside Flood Control
 - City of Del Rey Oaks Flood Control

II.B.1. Construction General Permit

The Project will be subject to the post-construction requirements found in the Construction General Permit (CGP) (Order No. 2009-0009-DWQ). The Project will satisfy the requirements of the CGP by utilizing the "more sophisticated, watershed process-based model" presented in this SWCP, rather than the Water Balance Calculator included in Appendix 2.1 of the CGP. The approach provided in this SWCP exceeds the requirements found in Appendix 2.1 of the CGP.

II.C. Jurisdictional Overview

The Project occurs within several jurisdictions and therefore will be subject to various storm water permits and drainage and flood control requirements, as outlined below.

II.C.1. City of Seaside

The project segments within the City of Seaside will be subject to the city's MS4 Permit (which require implementation of the Regional Post-Construction Requirements) as well as the city's flood control requirements. Compliance with City of Seaside requirements will be met by compliance with the PCRs.

II.C.2. City of Del Rey Oaks

The project segments within the City of Del Rey Oaks will be subject to the city's MS4 Permit (which require implementation of the Regional Post-Construction Requirements) as well as the city's flood control requirements. Compliance with City of Del Rey Oaks requirements will be met by compliance with the PCRs.

II.C.3. Caltrans (State Route 218)

Work within the Caltrans right of way (State Route 218) is subject to Caltrans requirements and the Caltrans MS4 Permit, and are addressed in the project's Storm Water Data Report (SWDR). An Encroachment Permit will be required for improvements proposed within Caltrans right of way. No Stormwater Control Measures (SCMs) are proposed within the Caltrans right-of-way. Work within the Caltrans right of way is not subject to the Regional Post-Construction Requirements.

II.D. Existing Site

The proposed trail occurs primarily within existing developed street and highway rights of way, as well as within three public park parcels. State Route 218 (Canyon Del Rey Boulevard) is an existing 2-to 4-lane highway. The various city streets within the City of Del Rey Oaks (Highland Street, Carlton Drive, and Work Avenue) are 2-lane streets with on-street parking and no sidewalks, 34 to 40 feet in paved width. Within City of Seaside, Plumas Avenue is an existing 2-lane street with on-street parking, sidewalk on one side, 26 to 32 feet in width curb-to-curb. The PG&E parcel along Plumas Avenue is unimproved except for the PG&E transmission towers and an AT&T communications facility.

II.E. FEMA Floodplain

Portions of the project, from approximately Station 53+00 to 205+00, are within FEMA Zone "AE" (Canyon Del Rey Creek), as described in the table below. The Project will not place any fill within the FEMA Floodway. The FEMA FIRMettes are included in Attachment D.

Trail Station	Notes			
53+00 to 55+00 +/-	Trail is above the 100-year Base Flood Elevation (BFE), but toe of fill extends into the mapped extents of Zone AE.			
56+00 to 59+00 +/-	Trail is lower than BFE, though outside the mapped extents of Zone AE			
67+00 to 120+00	Trail uses existing Angelus Way; no improvements proposed in this trail section other than signing/striping. Angelus Way is lower than the BFE, though outside the mapped extents of Zone AE.			
150+00 to 158+00 +/-	The proposed trail is lower than the FEMA BFE and within the mapped extents of Zone AE.			
158+00 to 201+00 +/-	The proposed trail is lower than the BFE and is within the mapped extents of Zone AE as well as the Regulatory Floodway. Note, the FEMA mapping does not follow the actual channel alignment in this area; this is a mapping artifact. The proposed trail is outside the existing creek channel based on the project topographic mapping.			
201+00 to 205+00 +/-	The proposed trail is lower than the BFE but outside the mapped extents of Zone AE. The FEMA BFE shows floodwaters overtopping State Route 218 during the 100-year flood event, therefore the BFE varies from 95' on the upstream side of the highway to 88' on the downstream side of the highway.			

Table 2. Trail Segments within FEMA Zone AE

Figure 1. FEMA mapping at Work Memorial Park

Figure 2. FEMA mapping at Del Rey Park and Frog Pond Wetland Preserve

II.F. Soils and Infiltration

A geotechnical investigation was conducted by Mc Millen Jacobs Associates, titled "Geotechnical Data Report" (November 2021). Infiltration testing was not performed.

The 1972 Soil Survey of Monterey County maps the soils within the project site as Arnold Loamy Sand (AkD / AkF), Baywood Sand (BbC), Oceano Loamy Sand (OaD), and Rindge Muck (Rb), as shown in the figure below.

Figure 3. NRCS Soil Survey Map

Symbol	Group Name	HSG	Comments		
AkD	Arnold loamy sand, 9 to 20 percent slopes	A	Estimated permeability: 6 to 20 in/hr in upper 48".		
AkF	Arnold loamy sand, 15 to 50 percent slopes				
BbC	Baywood sand, 2 to 15 percent slopes	A	Estimated permeability: 6 to 20 in/hr in upper 60".		
Rb	Rindge muck 0 to 2 percent slopes	D	Estimated permeability: 6 to 20 in/hr in upper 60", but water table estimated to be less than 3 feet below grade.		

Table 3. NRCS Soil Survey Soil Groups Characteristics

A factored infiltration rate of 1 in/hr (after applying a "safety factor" of 1) is used for SCM 2d (bioretention pond) based on the Soil Survey data above. A factored design infiltration rate of 1

in/hr (after applying a "safety factor" of 2) is used for SCM 11d, which is a proposed underground chamber system ("deep" systems). This is much lower than the 6 to 20 in/hr reported by the Soil Survey and is intended to account for diminishing infiltration over the life of SCM 11d.

II.G. Setbacks to Structures and Slopes

No slopes of concern are located above or below proposed SCM 11d (underground chambers).

SCM 2d (bioretention pond) is located at the toe of an existing slope and adjacent to a proposed fill slope. The SCM is set back at least 15 feet from the proposed fill slope, with the trail located between the SCM and the fill slope.

All proposed infiltration-based SCMs are located at least 10' away from buildings.

II.H. Domestic Water Wells

There are no identified public domestic water wells within 200' of proposed storm water control measures. (See Attachment D.)

II.I. Utilities and Easements

Existing utilities and utility easements occur at various locations within and near the project area. The presence of existing utilities within the right of way is a primary limitation on the implementation of SCMs.

The proposed SCMs avoid conflicting with utilities and will not be placed over utilities or within utility easements.

Infiltration-based SCMs will be located at least 10' horizontally away from potable water lines, 100' horizontally away from domestic water wells, and 4' horizontally away from other utilities.

II.J. Underground Hazardous Materials

There are no identified underground hazardous materials storage tanks, active hazardous waste sites, or active cleanup sites within 200' of the project. (See Attachment D.)

II.K. Other Opportunities and Constraints for Stormwater Control

The existing site presents various opportunities and constraints for implementation of stormwater controls. The primary features are:

- 1. The primary constraint for this project is that, like all projects within the street right-of-way, the project area accepts a relatively large amount of run-on, with very little space within right-of-way to implement SCMs.
- 2. Existing street width is leveraged to reduce the amount of new impervious area created by the project. (This does come at the cost of reduced on-street parking.)
- 3. The other primary constraint is the relative steepness of the street grades within the project area, especially along Work Avenue, Carlton Drive, Highland Street and Plumas Avenue. It is difficult to implement SCMs on sloping terrain due to the need for SCMs to be installed level.
- 4. The proposed SCM's were therefore strategically placed within the flatter segments of project: SCM 10a at Carlton Drive at Quendale Avenue, and SCM 11d and 11c at Plumas Avenue.
- 5. The soils throughout the project site have very high permeability. This significantly increases the feasibility of implementing infiltration-based SCMs.

III. Performance Requirement No. 1 (Tier 1): Site Design and Runoff Reduction

III.A. Design Strategies to Optimize Site Layout for Water Quality

III.A.1. Limitation of development envelope.

The Project Area (footprint) is limited to the minimum required for construction of the proposed recreational trails and associated site work. Existing trees and vegetation beyond the project area will be protected. The existing street width is leveraged to reduce the amount of new impervious area created by the project. (This does come at the cost of reduced on-street parking.)

III.A.2. Preservation of natural drainage features.

Portions of the proposed trail are located adjacent to Canyon Del Rey Creek and to the Frog Pond Wetland Preserve. Fencing will be provided along the limit of grading to ensure the project does not impact the creek or identified habitat areas outside the approved project footprint.

III.A.3. Setbacks from creeks, wetlands, and riparian habitats.

Portions of the proposed trail are located adjacent to Canyon Del Rey Creek and the Frog Pond Wetland Preserve. The proposed work meets all permit requirements for setbacks from creeks, wetlands and riparian habitats.

III.A.4. Minimization of imperviousness.

The project's New Impervious Area is minimized by developing the trail within existing pavement areas where possible (e.g. segments along Canyon del Rey Boulevard, Plumas Avenue and Carlton Drive) and by utilizing an appropriate (not excessive) pavement width.

III.B. Minimum Required Tier 1 Measures

All regulated projects are required to minimize stormwater runoff by implementing one (1) or more of the following Site Design Measures.

Implemented	Measure				
N/A	Direct roof runoff into cisterns or rain barrels for reuse.				
	Notes. Buildings are not proposed.				
N/A	Direct roof runoff onto vegetated areas safely away from building foundations and footings, consistent with the California Building Code.				
	Notes: Buildings are not proposed.				
Yes	Direct runoff from sidewalks, walkways and/or patios onto vegetated areas safely away from building foundations and footings, consistent with the California Building Code.				
	Notes: <u>Sidewalks, walkways and plazas will be sloped to drain to adjacent</u> planter areas where feasible, as shown on the construction drawings.				
N/A	Direct runoff from driveways and/or uncovered parking lots onto vegetated areas safely away from building foundations and footings, consistent with the California Building Code.				
	Notes: Driveways and parking lots are not proposed.				

 Table 4. Tier 1 Measures

Implemented	Measure
No	Construct bike lanes, driveways, uncovered parking lots, sidewalks, walkways and patios with permeable surfaces. Notes: <u>Permeable pavements are not proposed.</u>

IV. Post-Construction Drainage Design (Tier 2-4)

Onsite SCMs include one bioretention pond (SCM 2d), two high-flow tree box biofilters (SCMs 10a and 11c) and one underground chambers system (SCMs 11d). These systems are collectively sized to meet the Tier 2 (treatment), Tier 3 (retention) and Tier 4 (detention) requirements for the project as well as local flood control requirements.

Various system alternatives and locations were evaluated. The proposed system locations 1) are located adjacent to storm drains, 2) avoid the steep terrain found in many areas within the project, and 3) were placed where right-of-way was of sufficient width and character to allow for implementation of the proposed SCMs.

IV.A.1. Exempt Areas

Various areas are identified as Exempt from the Post Construction Requirements. Exempt areas do not need to demonstrate compliance with the Post Construction Requirements 1, 2 and 3, but are included in the Tier 4 (detention) calculations as well as in the local agency flood control calculations.

The following areas are identified as Exempt:

PCR Reference	Description	Exempt Area (s.f.)	
B.1.b.i.	Existing pavement replaced in-kind, with no change in drainage pattern. Examples include AC re-paving and curb ramp retrofits. Areas where paving type is changed (for example, curb bulb- outs) are not exempted.	35,400	
B.1.b.ii.	Pedestrian areas that drain to adjacent landscaping.	51,800	
	Total	87,200	

Table 5.	Exempt	New and	Replaced	Impervious	Areas

A detailed area breakdown of exempt areas is provided in Attachment E.

IV.A.2. Self-Treating Areas (STAs)

A self-treating area (STA) only treats the rain falling on itself and does not receive stormwater runoff from other areas. They are a portion of a Regulated Project in which infiltration, evapotranspiration, and other natural processes remove pollutants from stormwater. The self-treating areas may include conserved natural open areas and areas planted with native, drought-tolerant or LID appropriate vegetation.

No additional stormwater management is required for self-treating areas. (CCRWQCB Resolution No. R3-2013-0032, Attachment 1, Section B.4.d.iv.1.)

The following areas are identified as STAs for purposes of SCM sizing:

DMA	Description	Area (s.f.)
	Existing non-irrigated landscaped area	73,800
5700	Replaced landscaped area; will be seeded with drought-tolerant landscaping and non-irrigated.	13,600
	Total	87,200

Table 5A. Self Treating Areas

IV.A.3. Self-Retaining Areas (SRAs)

Also called "zero discharge" areas, Self-Retaining Areas (SRAs) are designed to retain some amount of rainfall (by ponding and infiltration and/or evapotranspiration) without producing stormwater runoff. Self-Retaining Areas may include graded depressions with landscaping or pervious pavement.

Runoff from impervious surfaces, generated by the LID design rainfall event, may be directed to undisturbed or natural landscaped areas. If this runoff will be infiltrated and will not produce runoff to the storm drain system, or a surface receiving waterbody, or create nuisance ponding that may affect vegetation health or contribute to vector problems, then no additional stormwater management is required for these impervious surfaces. (CCRWQCB Resolution No. R3-2013-0032, Attachment 1, Section B.4.d.iv.2.)

No SRAs are identified for calculation purposes. This is a conservative approach for SCM sizing.

V. Stormwater Control Measures (SCMs)

Stormwater control measures integrated into project designs that emphasize protection of watershed processes through replication of predevelopment runoff patterns (rate, volume, duration). Physical control measures include, but are not limited to, bioretention/rain gardens, permeable pavements, dispersion, soil quality and depth, minimal excavation foundations, vegetated roofs, and water use.

V.A. Summary of Proposed Stormwater Control Measures

Mitigation for New and Replaced Impervious Areas are provided by a series of Stormwater Control Measures (SCMs) as outlined in the table below. Each SCM is designed to meet Post-Construction Requirements 2, 3 and/or 4, as shown in the Table.

SCM No.	Tributary DMA	SCM Owner	Туре	Design Criteria
2d	PM0.118 & 5700	City of DRO	Non-Underdrained Bioretention Pond	PCR 2 (Treatment) + PCR 3 (Retention) + PCR 4 (Detention)
10a	25230	City of DRO	Tree Box Biofilter	PCR 2 (Treatment)
11c	31000A	City of Seaside	Tree Box Biofilter	PCR 2 (Treatment)
11d	31000A	City of Seaside	Underground Chambers	PCR 3 (Retention) + PCR 4 (Detention)
12a	C3	City of DRO	Tree Box Biofilter	PCR 2 (Treatment)

Table 6. Summary of Proposed SCM's

V.B. Stormwater Control Measure Sizing Calculations

V.B.1. PCR 2 – Water Quality Treatment Calculations

SCM 2d is designed to meet PR #2 on a flow-rate basis. See Table 7, below for sizing calculations.

SCMs 10a, 11c, and 12a are also designed to meet PR #2 on a flow-rate basis. See Tables 8 – 11, below for sizing calculations.

	DMA	ПΜΔ	лмα			DMA	Bioretention Pond		
DMA No.	Area (SF)	Post-project surface type	Runoff factor	Area x runoff factor	0.2 in/h 5 in/hr,	nr, 85 th Percentil Design Media T	e Precipitation Treatment Rate		
	100	New Impervious	1	100					
	100	Replaced Impervious	1	100					
DM0 110	0	New Pervious	0.1	0					
PM0.118	0	Replaced Pervious	0.1	0					
	12,600	Impervious Area to Remain	1	12,600					
	3,000	Pervious Area to Remain	0.1	300					
	0	New Impervious	1	0					
	0	Replaced Impervious	1	0	-				
	0	New Pervious	0.1	0					
5700	13,600	Replaced Pervious (STA)	0	0					
	4,700	Impervious Area to Remain	1	4,700					
	73,800	Pervious Area to Remain (STA)	0	0	SCM				
	800	Pond Itself	1	800	Sizing Factor	Minimum Area (SF)	Proposed Area (SF)		
			Total	18,600	0.04	744	800		

Table 7. Bioretention Sizing Calculation for SCM 2d

Surface Type	Surface Area (s.f.)	Runoff Factor	Surface Area x Runoff Factor (s.f.)
New Impervious Area	200	1	200
Replaced Impervious Area	1,200	1	1,200
New Pervious Area	0	0.1	0
Replaced Pervious Area	0	0.1	0
Impervious Area to Remain	41,300	1	41,300
Pervious Area to Remain	23,500	0.1	2,350
Tree Box Filter Area	72 ¹	1	72
Equivalent Imp	45,122		

Table 8. SCM 10a Equivalent Impervious Area (EIA) Calculation

¹Tree box area varies; see Table 11.

The largest area is used here, which is conservative.

Table 9.	SCM 11c Ed	guivalent Im	pervious A	Area (EIA) Calculation
					/

Surface Type	Surface Area (s.f.)	Runoff Factor	Surface Area x Runoff Factor (s.f.)
New Impervious Area	4,500	1	4,500
Replaced Impervious Area	14,000	1	14,000
New Pervious Area	0	0.1	0
Replaced Pervious Area	0	0.1	0
Impervious Area to Remain	6,400	1	6,400
Pervious Area to Remain	0	0.1	0
Tree Box Filter Area	16 ¹	1	16
Equivalent Imp	24,916		

¹Tree box area varies; see Table 11.

The largest area is used here, which is conservative.

 Table 10.
 SCM 12a Equivalent Impervious Area (EIA) Calculation

Surface Type	Surface Area (s.f.)	Runoff Factor	Surface Area x Runoff Factor (s.f.)
New Impervious Area	0	1	0
Replaced Impervious Area	1,200	1	1,200
New Pervious Area	0	0.1	0
Replaced Pervious Area	0	0.1	0
Impervious Area to Remain	39,500	1	39,500
Pervious Area to Remain	0	0.1	0
Tree Box Filter Area	60 ¹	1	60
Equivalent Imp	40,760		

¹Tree box area varies; see Table 11. The largest area is used here, which is conservative.

SCM #	Manufacturer / Product	GULD Basic Treatment Flow Rate (in/hr) ⁽¹⁾	Minimum Area Required (s.f.)	Area Provided (Box Size) (s.f.)	Internal Overflow (c.f.s.)	
	Contech Filterra	175	52	60 (6'x10')		
10a	Oldcastle BioPod	153	59	60 ⁽³⁾ (6'x10')	None	
	Rotondo StormGarden	140	65	72 (6'x12')		
	Contech Filterra	175	29	40 (4'x10')		
11c	Oldcastle BioPod	153	33	40 (4'x10')	1.1	
	Rotondo StormGarden	140	36	40 (4'x10')		
	Contech Filterra	175	47	48 (6'x8')		
12a	Oldcastle BioPod	153	53	60 (6'x10')	1.8	
	Rotondo 140 StormGarden		58	60 (6'x10')		

Table 11. T	Tree Box	Biofilter	Sizing	Calculation
-------------	----------	-----------	--------	-------------

⁽¹⁾ System must be Washington State Department of Ecology GULD Certified.

⁽²⁾ Minimum Area Required = EIA x (0.2 in/hr) / (Design Treatment Flow Rate)

⁽³⁾ The BioPod system includes an internal overflow which occupies approximately 4 s.f.

⁽⁴⁾ Overflow Capacity = EIA x 10-year, 15-minute peak precipitation (1.88 in/hr)

V.B.2. Tier 3 – Runoff Retention

The project's required retention volume is calculated using the Central Coast Region Stormwater Control Measure Sizing Calculator (see Attachment G). The volumes required and provided are summarized in the following table.

The proposed retention volumes will be provided in the drain rock reservoir within SCM 2d as well as within SCM 11d (underground chambers).

Table 12. Retention Volumes Required and Provided

SCM	Туре	Retention Volume ype Required (c.f.)	
2d	Bioretention Pond	648	1220 ¹
11d	Infiltration Trench	1482	1628 ²

¹ Retention Volume Provided = 800 sf Pond Area x (18" Rock Reservoir x 0.35 void ratio + 24" BSM x 0.25 void ratio + 6" surface ponding)

²See Attachment F for volume calculations.

V.B.3. Tier 4 – Peak Flow Management and Flood Control

Runoff rates for the Project were evaluated for the Peak Flow and Flood Control design storm events listed below, in accordance with *Table 1. Routing Method Criteria*, as found in Regional Permit Attachment D. The specific Routing Method Criteria utilized are:

Table 15. Routing method ontena					
Hydrograph Analysis Method	NRCS TR-55 (using the HEC-HMS computer program)				
Pond Routing Method	Storage-Discharge				
Rainfall Distribution	NRCS Type 1				
Time of Concentration	15 minutes (10 minute Lag Time)				
Time Increment	1 minute				

Table 13. Routing Method Criteria

The final pond routing results are summarized in the Table below. The detailed model inputs and results can be found in Attachment H.

Storm Event	Pre-Project Peak Discharge (cfs)	Post-Project Peak Discharge (cfs)
2-Year	20.1	19.6
10-Year	32.5	32.2

Table 14. Peak Discharge Comparison

The table above demonstrates that the peak discharges from the site post-project will be equal to or less than the peak discharges from the site pre-project.

VI. Site Source Control

VI.A. Site activities and potential sources of pollutants

Site elements and activities within the project area with the potential to pollute storm water runoff are provided in the following table.

Potential Pollutant Source	Source control BMPs
Public Street Right of Way	Design BMPs:
	 Mark all inlets with the words "No Dumping! Flows to Bay" or similar.
	Operational BMPs:
	Maintain and periodically repaint or replace inlet markings.
	 Perform street sweeping as required by the MS4 Permit
Landscape/ Outdoor	Design BMPs:
Pesticide Use/Building and Grounds Maintenance	 Preserve existing native trees, shrubs, and ground cover to the maximum extent possible.
	• Landscaping is designed to minimize irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to stormwater pollution.
	 Where landscaped areas are used to retain or detain stormwater, plants that are tolerant of saturated soil conditions.
	 Pest-resistant plants were considered.
	 Plants are selected considering site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions.
	Operational BMPs:
	 Maintain landscaping using minimum or no pesticides.
	 Provide IPM information to new owners, lessees and operators
	 See applicable operational BMPs in Fact Sheet SC-41, "Building and Grounds Maintenance," in the CASQA Stormwater Quality Handbooks at www.cabmphandbooks.com

Table 15. Potential Pollutant Sources and Source Controls

VII. Structural Control Measures (SCM) Operations and Maintenance

VII.A. Ownership and Responsibility for SCM Maintenance in Perpetuity

The City of Seaside will own, operate and maintain SCMs 11c and 11d.

The City of Del Rey Oaks will own, operate and maintain SCMs 2d, 10a, and 12a.

VII.B. Summary of SCM Operations and Maintenance Requirements for Each SCM

An Operation and Maintenance Plan (O&M Plan) will be prepared and implemented for the facilities prior to final acceptance by the City. In general, maintenance activities will include:

- Bioretention Pond
 - o Removal of trash, debris, dead vegetation, and accumulated sediment.
 - Replenish / replace plants, mulch, rock and other materials as needed
 - Visual inspections to ensure facility is operating as designed
- Tree Box Biofilter
 - Removal of trash, debris, dead vegetation, and accumulated sediment.
 - Replenish / replace plants, mulch, rock and other materials as needed
 - Visual inspections to ensure facility is operating as designed
- Underground Chambers
 - Removal of trash, debris, vegetation, and accumulated sediment.
 - Visual inspections to ensure facility is operating as designed

VIII. SCM Construction Plan Set Checklist

SCM #	SCM Decorintion	Construction Plan Sheet				
3CIVI #		Plan	Profile	Detail		
SCM 2d	Bioretention Pond	SW-102, C-104	SW-102	SW-501		
SCM 10a	Tree Box Biofilter	SW-107	SW-107	SW-501		
SCM 11c	Tree Box Biofilter	SW-108	SW-108	SW-501		
SCM 11d	/ 11d Underground Chamber		SW-108	SW-108		
SCM 12a	Tree Box Biofilter	SW-103	SW-103	SW-501		

Table 16: Construction Plan Checklist

IX. Certification

I certify that the stormwater control facilities described in this Stormwater Control Plan have been designed to meet the following applicable Post-Construction Requirements in accordance with Central Coast Regional Water Quality Control Board Resolution No. R3-2013-0032, Attachment 1, Post-Construction Stormwater Management Requirements for Development Projects in the Central Coast Region (Check all that apply):

- PCR 1: Site Design and Runoff Reduction
- PCR 2: Water Quality Treatment
- PCR 3: Runoff Retention
- PCR 4: Peak Management
- □ PCR 5: Special Circumstances

Richard P. Weber Principal, Whitson Engineers

6/16/2023

date

Attachment A

WMZ & Groundwater Basin Map

Watershed Management Zone Map

Watershed Management Zone (WMZ) = 1

Source: Monterey County GIS, Accessed 6/28/22

Attachment B

Precipitation

85th Percentile Precipitation Map

24-Hour Precipitation Depth at Project Site: 0.8"

Source: "Central Coast Region 85th Percentile 24-Hour Rainfall Depth", SWRCB

95th Percentile Precipitation Map

24-Hour Precipitation Depth at Project Site: 1.3"

Source: "Central Coast Region 95th Percentile 24-Hour Rainfall Depth", SWRCB

NOAA Atlas 14, Volume 6, Version 2 Location name: Monterey, California, USA* Latitude: 36.5959°, Longitude: -121.8374° Elevation: 152.43 ft** * source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Averag	ge recurrend	ce interval (y	years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.144 (0.126-0.165)	0.178 (0.156-0.205)	0.227 (0.198-0.263)	0.271 (0.234-0.317)	0.338 (0.281-0.410)	0.394 (0.320-0.490)	0.457 (0.360-0.585)	0.527 (0.403-0.697)	0.633 (0.461-0.877)	0.724 (0.507-1.04)
10-min	0.206 (0.181-0.237)	0.255 (0.223-0.294)	0.325 (0.284-0.376)	0.389 (0.336-0.454)	0.484 (0.402-0.587)	0.565 (0.459-0.703)	0.655 (0.517-0.838)	0.756 (0.577-0.999)	0.907 (0.661-1.26)	1.04 (0.727-1.50)
15-min	0.249 (0.218-0.287)	0.308 (0.270-0.355)	0.393 (0.344-0.455)	0.470 (0.406-0.549)	0.585 (0.487-0.710)	0.683 (0.555-0.850)	0.792 (0.625-1.01)	0.914 (0.698-1.21)	1.10 (0.799-1.52)	1.25 (0.879-1.81)
30-min	0.359 (0.315-0.414)	0.444 (0.389-0.512)	0.568 (0.496-0.657)	0.678 (0.586-0.792)	0.844 (0.702-1.02)	0.986 (0.800-1.23)	1.14 (0.901-1.46)	1.32 (1.01-1.74)	1.58 (1.15-2.19)	1.81 (1.27-2.61)
60-min	0.443 (0.388-0.510)	0.547 (0.479-0.631)	0.699 (0.610-0.809)	0.835 (0.722-0.975)	1.04 (0.865-1.26)	1.21 (0.985-1.51)	1.41 (1.11-1.80)	1.62 (1.24-2.15)	1.95 (1.42-2.70)	2.23 (1.56-3.21)
2-hr	0.606 (0.532-0.698)	0.746 (0.654-0.861)	0.945 (0.825-1.09)	1.12 (0.968-1.31)	1.38 (1.14-1.67)	1.59 (1.29-1.98)	1.82 (1.44-2.33)	2.08 (1.59-2.74)	2.45 (1.78-3.40)	2.76 (1.94-3.99)
3-hr	0.737 (0.647-0.849)	0.909 (0.796-1.05)	1.15 (1.00-1.33)	1.36 (1.18-1.59)	1.66 (1.38-2.02)	1.92 (1.55-2.38)	2.18 (1.72-2.80)	2.48 (1.89-3.28)	2.91 (2.12-4.03)	3.26 (2.29-4.71)
6-hr	0.945 (0.829-1.09)	1.18 (1.03-1.36)	1.50 (1.31-1.73)	1.77 (1.53-2.07)	2.17 (1.80-2.63)	2.48 (2.02-3.09)	2.82 (2.23-3.61)	3.19 (2.43-4.21)	3.71 (2.70-5.14)	4.13 (2.90-5.96)
12-hr	1.11 (0.975-1.28)	1.42 (1.24-1.64)	1.84 (1.61-2.13)	2.19 (1.90-2.56)	2.70 (2.25-3.28)	3.11 (2.52-3.86)	3.53 (2.79-4.52)	3.99 (3.05-5.28)	4.64 (3.38-6.44)	5.17 (3.62-7.46)
24-hr	1.46 (1.34-1.63)	1.92 (1.75-2.14)	2.53 (2.31-2.83)	3.04 (2.76-3.43)	3.76 (3.32-4.36)	4.34 (3.76-5.11)	4.94 (4.19-5.94)	5.58 (4.62-6.87)	6.48 (5.18-8.26)	7.20 (5.59-9.46)
2-day	1.83 (1.67-2.04)	2.41 (2.20-2.69)	3.19 (2.91-3.56)	3.82 (3.47-4.31)	4.70 (4.15-5.45)	5.39 (4.67-6.35)	6.10 (5.17-7.33)	6.84 (5.66-8.42)	7.85 (6.28-10.0)	8.66 (6.73-11.4)
3-day	2.09 (1.91-2.33)	2.77 (2.53-3.09)	3.65 (3.33-4.08)	4.37 (3.96-4.92)	5.35 (4.72-6.20)	6.11 (5.29-7.20)	6.88 (5.84-8.28)	7.68 (6.36-9.46)	8.77 (7.01-11.2)	9.62 (7.47-12.6)
4-day	2.29 (2.10-2.55)	3.04 (2.78-3.39)	4.01 (3.65-4.48)	4.79 (4.34-5.40)	5.86 (5.16-6.78)	6.67 (5.78-7.86)	7.50 (6.36-9.02)	8.35 (6.92-10.3)	9.50 (7.60-12.1)	10.4 (8.07-13.6)
7-day	2.80 (2.57-3.12)	3.75 (3.43-4.19)	4.97 (4.54-5.56)	5.95 (5.39-6.70)	7.26 (6.40-8.40)	8.25 (7.15-9.72)	9.25 (7.85-11.1)	10.3 (8.51-12.6)	11.6 (9.31-14.8)	12.7 (9.85-16.7)
10-day	3.16 (2.90-3.52)	4.25 (3.89-4.75)	5.65 (5.15-6.31)	6.76 (6.12-7.61)	8.24 (7.26-9.53)	9.35 (8.10-11.0)	10.5 (8.88-12.6)	11.6 (9.61-14.3)	13.1 (10.5-16.7)	14.3 (11.1-18.7)
20-day	4.18 (3.82-4.65)	5.62 (5.14-6.27)	7.45 (6.80-8.33)	8.89 (8.05-10.0)	10.8 (9.50-12.5)	12.2 (10.5-14.3)	13.6 (11.5-16.3)	15.0 (12.4-18.4)	16.8 (13.4-21.4)	18.2 (14.1-23.9)
30-day	5.07 (4.64-5.65)	6.78 (6.20-7.56)	8.92 (8.14-9.98)	10.6 (9.60-11.9)	12.8 (11.3-14.8)	14.4 (12.5-16.9)	16.0 (13.5-19.2)	17.5 (14.5-21.6)	19.6 (15.7-25.0)	21.1 (16.4-27.7)
45-day	6.39 (5.85-7.12)	8.44 (7.72-9.42)	11.0 (10.0-12.3)	13.0 (11.8-14.6)	15.5 (13.7-18.0)	17.4 (15.1-20.5)	19.2 (16.3-23.1)	21.0 (17.4-25.9)	23.3 (18.7-29.8)	25.1 (19.5-32.9)
60-day	7.66 (7.01-8.53)	9.99 (9.13-11.1)	12.9 (11.7-14.4)	15.1 (13.7-17.0)	17.9 (15.8-20.8)	20.0 (17.3-23.6)	22.0 (18.7-26.5)	24.0 (19.9-29.6)	26.5 (21.2-33.9)	28.4 (22.1-37.3)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

NOAA Atlas 14, Volume 6, Version 2 Location name: Monterey, California, USA* Latitude: 36.5959°, Longitude: -121.8374° Elevation: 152.43 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹											
Duration	Average recurrence interval (years)										
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	1.73 (1.51-1.98)	2.14 (1.87-2.46)	2.72 (2.38-3.16)	3.25 (2.81-3.80)	4.06 (3.37-4.92)	4.73 (3.84-5.88)	5.48 (4.32-7.02)	6.32 (4.84-8.36)	7.60 (5.53-10.5)	8.69 (6.08-12.5)	
10-min	1.24	1.53	1.95	2.33	2.90	3.39	3.93	4.54	5.44	6.22	
	(1.09-1.42)	(1.34-1.76)	(1.70-2.26)	(2.02-2.72)	(2.41-3.52)	(2.75-4.22)	(3.10-5.03)	(3.46-5.99)	(3.97-7.55)	(4.36-8.98)	
15-min	0.996 (0.872-1.15)	1.23 (1.08-1.42)	1.57 (1.38-1.82)	1.88 (1.62-2.20)	2.34 (1.95-2.84)	2.73 (2.22-3.40)	3.17 (2.50-4.05)	3.66 (2.79-4.83)	4.39 (3.20-6.08)	5.02 (3.52-7.24)	
30-min	0.718	0.888	1.14	1.36	1.69	1.97	2.28	2.64	3.17	3.62	
	(0.630-0.828)	(0.778-1.02)	(0.992-1.31)	(1.17-1.58)	(1.40-2.05)	(1.60-2.45)	(1.80-2.92)	(2.01-3.49)	(2.31-4.39)	(2.54-5.22)	
60-min	0.443 (0.388-0.510)	0.547 (0.479-0.631)	0.699 (0.610-0.809)	0.835 (0.722-0.975)	1.04 (0.865-1.26)	1.21 (0.985-1.51)	1.41 (1.11-1.80)	1.62 (1.24-2.15)	1.95 (1.42-2.70)	2.23 (1.56-3.21)	
2-hr	0.303	0.373	0.472	0.560	0.688	0.794	0.910	1.04	1.22	1.38	
	(0.266-0.349)	(0.327-0.430)	(0.412-0.546)	(0.484-0.654)	(0.572-0.834)	(0.644-0.988)	(0.718-1.16)	(0.792-1.37)	(0.892-1.70)	(0.968-1.99)	
3-hr	0.245	0.303	0.383	0.453	0.554	0.638	0.727	0.826	0.968	1.09	
	(0.215-0.283)	(0.265-0.349)	(0.335-0.443)	(0.392-0.529)	(0.461-0.673)	(0.517-0.793)	(0.574-0.931)	(0.631-1.09)	(0.705-1.34)	(0.761-1.57)	
6-hr	0.158	0.197	0.250	0.296	0.362	0.415	0.471	0.532	0.619	0.690	
	(0.138-0.182)	(0.172-0.227)	(0.218-0.289)	(0.256-0.346)	(0.301-0.439)	(0.337-0.516)	(0.372-0.603)	(0.406-0.703)	(0.451-0.858)	(0.484-0.996)	
12-hr	0.092	0.118	0.153	0.182	0.224	0.258	0.293	0.331	0.385	0.429	
	(0.081-0.106)	(0.103-0.136)	(0.133-0.177)	(0.158-0.213)	(0.186-0.272)	(0.209-0.321)	(0.231-0.375)	(0.253-0.438)	(0.281-0.534)	(0.301-0.619)	
24-hr	0.061	0.080	0.105	0.127	0.157	0.181	0.206	0.232	0.270	0.300	
	(0.056-0.068)	(0.073-0.089)	(0.096-0.118)	(0.115-0.143)	(0.138-0.182)	(0.157-0.213)	(0.175-0.248)	(0.193-0.286)	(0.216-0.344)	(0.233-0.394)	
2-day	0.038	0.050	0.066	0.080	0.098	0.112	0.127	0.142	0.164	0.180	
	(0.035-0.042)	(0.046-0.056)	(0.061-0.074)	(0.072-0.090)	(0.086-0.113)	(0.097-0.132)	(0.108-0.153)	(0.118-0.175)	(0.131-0.209)	(0.140-0.237)	
3-day	0.029	0.038	0.051	0.061	0.074	0.085	0.096	0.107	0.122	0.134	
	(0.027-0.032)	(0.035-0.043)	(0.046-0.057)	(0.055-0.068)	(0.066-0.086)	(0.073-0.100)	(0.081-0.115)	(0.088-0.131)	(0.097-0.155)	(0.104-0.175)	
4-day	0.024	0.032	0.042	0.050	0.061	0.070	0.078	0.087	0.099	0.108	
	(0.022-0.027)	(0.029-0.035)	(0.038-0.047)	(0.045-0.056)	(0.054-0.071)	(0.060-0.082)	(0.066-0.094)	(0.072-0.107)	(0.079-0.126)	(0.084-0.142)	
7-day	0.017	0.022	0.030	0.035	0.043	0.049	0.055	0.061	0.069	0.076	
	(0.015-0.019)	(0.020-0.025)	(0.027-0.033)	(0.032-0.040)	(0.038-0.050)	(0.043-0.058)	(0.047-0.066)	(0.051-0.075)	(0.055-0.088)	(0.059-0.099)	
10-day	0.013	0.018	0.024	0.028	0.034	0.039	0.044	0.048	0.055	0.059	
	(0.012-0.015)	(0.016-0.020)	(0.021-0.026)	(0.026-0.032)	(0.030-0.040)	(0.034-0.046)	(0.037-0.052)	(0.040-0.060)	(0.044-0.070)	(0.046-0.078)	
20-day	0.009	0.012	0.016	0.019	0.022	0.025	0.028	0.031	0.035	0.038	
	(0.008-0.010)	(0.011-0.013)	(0.014-0.017)	(0.017-0.021)	(0.020-0.026)	(0.022-0.030)	(0.024-0.034)	(0.026-0.038)	(0.028-0.045)	(0.029-0.050)	
30-day	0.007	0.009	0.012	0.015	0.018	0.020	0.022	0.024	0.027	0.029	
	(0.006-0.008)	(0.009-0.010)	(0.011-0.014)	(0.013-0.017)	(0.016-0.021)	(0.017-0.024)	(0.019-0.027)	(0.020-0.030)	(0.022-0.035)	(0.023-0.039)	
45-day	0.006	0.008	0.010	0.012	0.014	0.016	0.018	0.019	0.022	0.023	
	(0.005-0.007)	(0.007-0.009)	(0.009-0.011)	(0.011-0.014)	(0.013-0.017)	(0.014-0.019)	(0.015-0.021)	(0.016-0.024)	(0.017-0.028)	(0.018-0.030)	
60-day	0.005 (0.005-0.006)	0.007 (0.006-0.008)	0.009 (0.008-0.010)	0.010 (0.009-0.012)	0.012 (0.011-0.014)	0.014 (0.012-0.016)	0.015 (0.013-0.018)	0.017 (0.014-0.021)	0.018 (0.015-0.024)	0.020 (0.015-0.026)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Monterey County Soil Survey

Soil Map Unit AKD: Arnold loamy sand, 9 to 20 percent slopes (MLRA 15) BcC: Baywood sand, 2 to 15 percent slopes Rb: Rindge muck, 0 to 2 percent slopes (MLRA 14)

TABLE 7.—Estimated physical and chemical properties

[An asterisk in the first column indicates that at least one mapping unit in this series is made up of two or more kinds of soil which may have different properties and limitations. For this reason it is necessary to follow carefully the instructions for referring to other series that appear in the first column. The symbol < means less than; > means more than. The erosion tolerance factor (T) is for the entire profile]

Soil name and map symbol	Depth	Permea- bility	Available water capacity	Soil reaction	Salin-	Shrink- swell	Risk of corrosion		Erosion factors	
						potential	Uncoated steel	Concrete	ĸ	т
*Arnold: AkD, AkF, Am, Ar For San Andreas part of Am, see San Andreas series. For Santa Ynez part of Ar, see Santa Ynez series.	0-48 48	6.0-20.0	0.05-0.09	5.1-7.8	<2	Low	Moderate	Moderate	0.15	4
Baywood: BbC	0-60	6.0-20.0	0.05-0.11	5.1-7.8	<2	Low	High	Moderate	0.15	5
Rindge: Rb	0-60	6.0-20.0	0.26-0.30	4.5-6.5	<2	Very low 1	High H	High		

TABLE 9.--Soil and water features

[An asterisk in the first column indicates that at least one mapping unit in this series is made up of two or more kinds of soil which may have different properties and limitations. For this reason it is necessary to follow carefully the instructions for referring to other series that appear in the first column. Absence of an entry indicates the feature is not a concern. See the definitions of "flooding" and "water table" in the Glossary for explanations of such terms as "rare," "brief," and "perched." The symbol > means greater than]

Coll name and man such a	Hydro- logic group	Flooding			High water table			Bedrock	
Soil name and map symbol		Frequency	Duration	Months	Depth	Kind	Months	Depth	Hardness
*Arnold: AkD, AkF, Am, Ar For San Andreas part of Am and Santa Ynez part of Ar, see the San Andreas and Santa Ynez series.	B	None			- >6.0		-	40-60	Rippable
Baywood: BbC	A	None			>6.0			>60	
Rindge: Rb	D	Common	Very long	Nov-Jun	0.0-3.0	Apparent	Jan-Dec	>60	

Source: USDA Soil Survey, 1978

Fort Ord Regional Trail & Greenway Canyon Del Rey/SR 218 Segment

Geotechnical Data Report

Report Status – Draft

November 2021

November 11, 2021

Ms. Lindsey Van Parys GHD 2200 21st Street Sacramento, CA 95818

Subject: Geotechnical Data Report

Transportation Agency for Monterey County Fort Ord Regional Trail & Greenway - Canyon Del Rey/SR218 Segment Del Rey Oaks, California

Dear Ms. Lindsey,

This letter prefaces the accompanying draft Geotechnical Data Report for portions of the Transportation Agency for Monterey County's (TAMC) Canyon Del Rey/SR218 Segment of the Fort Ord Regional Trail & Greenway (FORTAG) project in the city of Del Rey Oaks, California. The report summarizes to-date findings of our geotechnical study.

We appreciate the opportunity to serve GHD and TAMC on this project. Please contact us if you have any questions about our draft report, or if you have geotechnical-related information that would be useful to incorporate into the final Geotechnical Data Report.

Sincerely,

McMILLEN JACOBS ASSOCIATES

Su Soe, PE Project Engineer Dru R. Nielson, PG CEG Principal Geologist Norman Joyal, PE GE Principal

Distribution: GHD (PDF) File No.: 6231.0

Table of Contents

1.0	Introd	luction	1	1					
2.0	Findir	ngs		1					
	2.1	.1 Background							
	2.2	Subsurface Exploration							
		2.2.1	Project Exploration Borings2	2					
		2.2.2	Laboratory Tests	3					
	2.3	3 Groundwater							
	Near Surface								
	2.4	Soils		3					
	2.5	Geology		3					
	2.6	Seismote	ctonics	1					
		2.6.1	Liquefaction	5					
		2.6.2	Tsunamis	5					
	2.7	Flooding		5					
	2.8	Sea Leve	l Rise	5					
3.0	Limita	ations		5					
4.0	Refer	ences	θ	3					

List of Tables

Table 1. Partial Summary of Information from Project Borings	. 2
Table 2. Site Classification (adapted from ASCE 7-16 Table 20.3-1)	4

List of Figures

- Figure 1 Project Area Map
- Figure 2 Historical Topographic Maps
- Figure 3 Historical Aerial Photographs
- Figure 4 Soil and GeoTracker Map
- Figure 5.1 Geologic Map
- Figure 5.2 Geologic Map
- Figure 6 Vs30 Map
- Figure 7 Fault Map
- Figure 8 Earthquake Map
- Figure 9 Seismic Shaking Map

Figure 10 – Modified Mercalli Intensity Scale

- Figure 11 Liquefaction Susceptibility Map
- Figure 12.1 Inundation Map
- Figure 12.2 Sea Level Rise

Appendices

Appendix A – Boring Log Legends & Bedrock Descriptors

Appendix B – Boring Logs

Appendix C – Laboratory Test Results

1.0 Introduction

This report summarizes findings of a geotechnical study of portions of the Transportation Agency for Monterey County's (TAMC) Canyon Del Rey/State Route 218 (SR218) Segment of the proposed Fort Ord Regional Trail & Greenway (FORTAG) project in the city of Del Rey Oaks, California. The entire FORTAG project is a 28-mile long proposed network of paved recreational trails and greenways connecting communities in and around the former location of the Fort Ord military base. Our geotechnical study and this report pertains to portions of the Canyon Del Rey/SR218 Segment of the FORTAG project that are located near exploratory borings B-1 through B-6 as illustrated in Figure 1, and as described herein. References to the project in the text in this report refer solely to portions of the Canyon Del Rey/SR218 Segment that were part of our geotechnical study.

2.0 Findings

Findings from our geotechnical study are summarized in the following sections.

2.1 Background

Historical topographic maps and aerial photographs of the project are provided in Figures 1, 2, and 3. Salient observations from these and other documents include the following:

- The project area is located along the Central Coast of California near Monterey Bay (Figure 1).
- Based on Google Earth data, the ground surface elevation at sites of exploration borings for the project range from 28 feet above mean sea level at boring B-1, to 130 feet above mean sea level at boring B-6.
- Many of the roadways in the project area, including what appears to be a former concrete roadway that is now buried below Canyon Del Rey Boulevard (SR218; see the log of boring B-5b in Appendix B) first appear on topographic maps dated after 1913 and by 1941 (Figure 2).
- Frog Creek is shown in the 1941 topographic map provided in Figure 2, as a tributary into Laguna del Rey Creek in the vicinity of the subject project's planned SR218 crossing.
- Based on a comparison of earlier topographic maps with the 1947 topographic map provided in Figure 2, and with the historical photos in Figure 3, grading related to the construction of Canyon Del Rey Boulevard (SR218) consisted of the placement of fill over (1) a former roadway, and (2) the tributary connection between Frog Creek and Laguna del Rey Creek (see the log of boring B-5 in Appendix B). This resulted in a closed depression (i.e., Frog Pond) that is indicated by the hachured 80-foot contour in the 1947 topographic map provided in Figure 2. This closed depression (now referred to as Frog Pond) rerouted drainage from Frog Creek to Laguna del Rey Creek through a culvert constructed upgradient of the original tributary connection and below Canyon Del Rey Boulevard at a location that is several tens of feet east of the planned SR218 tunnel crossing of this project.
- Historical aerial photographs of the project area in Figure 3 document residential development between1949 and 1956.
2.2 Subsurface Exploration

2.2.1 Project Exploration Borings

The location of exploration borings completed for the project are mapped in Figure 1. The logs of the borings are provided in Appendix B and a legend for the boring logs is provided in Appendix A. Table 1 summarizes the information from the boring logs.

	(ft)		E	BGS Depth ⁽	³⁾ (ft)	r dn			
Boring ⁽¹⁾	Elevation ⁽²⁾	Station ⁽²⁾	Total	to GW (Seepage) /Level	Interval (ft)	Bedrock o USCS ⁽⁴⁾ Gro Symbol	SPT ⁽⁵⁾ (N)	Qu ⁽⁵⁾ (ksf)	Notes ⁽⁶⁾
	20	2	10	5.0	0-5	SM	6	-	fill
В-Т	28	ſ	10	5.0	5-10	SP	3	-	
D 2	71	2	17 5		0-16	SP-SM	49, 40	0.1	mica
D-2	/ 1	ſ	17.5	NE	16-17.5	Bedrock	50/3"		Monterey Formation (?)
D 2	74	2	10	NE	0.0-5	SM	-	-	fill in upper 2.5'
D-3	74	ſ	10		5-10	СН	5	1.1	Wc = 40, Vd = 79 pcf
					0-16	SM/SC	5, 7	-	fill in upper 5'
					16-17.5	ML	4	-	Wc = 43, Vd = 74 pcf
				(10)/31.0	17.5-23.5	SM/SC	9	-	
B-4	83	?	40		23.5-25.5	CL/CH	-	-	
					25.5-34.5	SP-SM	12, 20	-	
					34.5-37	МН	-	-	diatomite/bentonite (?)
					37-40	MH & PT	4	-	LL =112, PI = 42
B-5a	97	?	2	NE	0-2	SP	-	-	refusal in fill on concrete & metal
					0-3	SM	-	-	fill
B-5h	07	2	40	26.0	3-11.5	SP-SM/SP-SC	4	-	fill on concrete
D-30	51	:	40	20.0	11.5-32	SM/SC	3, 4, 4, 5	-	Wc = 78, ¥d = 52 pcf
					32-40	MH & Bedrock	26, 27	0.4	Monterey Formation (?)
					0-4.5	SM	-	-	
B-6	130	?	20	NE	4.5-9.5	SP-SM/SP-SC	14	-	
					9.5-20	SM	51, 43	-	

Table 1. Partial Summary of Information from Project Borings

⁽¹⁾ Drilled in August 2021. Complete logs and lab test results in Appendices B and C. See Figure 1 for mapped boring locations.

⁽²⁾ Ground surface elevation from Google Earth (2021). ?- Station to be added in the final GDR from available GHD plans.

⁽³⁾ BGS - Below ground surface. GW – Groundwater. NE - not encountered. Groundwater seepage depth during drilling and groundwater level depth measured in boring at time of backfilling, not necessarily the static groundwater level depth.

⁽⁴⁾ Unified Soil Classification System (USCS) and group symbol defined in Appendix A.

⁽⁵⁾ N = greatest ASTM D1586 Standard Penetration Test Blow Count for interval. Qu = unconfined compressive strength.

⁽⁶⁾ Wc = moisture content. χd = dry density. See the complete boring logs in Appendix B, and laboratory test results in Appendix C.

2.2.2 Laboratory Tests

Moisture content, unit weight, Atterberg limits, grain size, unconfined compression, soil corrosion, and direct shear tests were performed on soil samples retrieved from project borings. The results of the tests are summarized in the boring logs provided in Appendix B, and in laboratory test results sheets provided in Appendix C.

2.3 Groundwater

The depth to groundwater (or lack thereof) was measured and logged in each exploration boring for the project during and immediately after drilling (see the individual logs of each boring in Appendix B). The logged groundwater measurements from each boring are summarized in Table 1.

2.4 Near Surface Soils

Near surface soils in the project area are mapped and described in Figure 4 as a combination of Arnold loamy sand, Baywood sand, Oceano loamy sand, and Rindge muck. Salient observations of near surface soil mapping and descriptions provided in Figure 4 include the following:

- The sand and loamy sand units typically consist of clayey to silty sand with 100% passing the No. 4 sieve (i.e., there is no gravel-sized or larger particles retained on the No. 4 sieve) and 5% to 40% silt- and clay-sized particles passing the No. 200 sieve.
- Bedrock is mapped to underlie Arnold loamy sands at depth to as shallow as 3.5 feet below the ground surface.
- Rindge muck is classified as Peat. Areas mapped with Rindge muck have a seasonal high water table between 0 and 6 feet below ground surface. Areas of Frog Pond and nearby Laguna del Rey Creek are mapped as Rindge muck.

Information pertaining to potential sources of contamination, obtained from the State of California's Department of Water Resources GeoTracker program, is also presented on Figure 4. This information indicates that cleanup sites are located on Fremont Boulevard, near the west end of the Canyon Del Rey/SR218 segment of the project.

2.5 Geology

Geology maps that include the project area have been completed by several authors (e.g., Hartwell et. al., 2016; Dibblee and Minch, 2007; Clark et. al., 1997; Dupre 1990; Dibblee et al., 1974), including those provided in Figures 5.1 and 5.2. The maps show and describe geologic mapping units that include (1) historic artificial fills, (2) recent and Quaternary stream channel, alluvial, alluvial fan, marine terrace, and dune-sand deposits, and (3) and southward dipping Miocene Monterey Formation. The Monterey Formation includes calcareous to siliceous claystone, siltstone, and sandstone; porcelanite; chert; diatomite; and bentonite.

An average shear-wave velocity map for the upper 30 meters (98 ft) of ground (Vs₃₀) in the project area is provided in Figure 6. The Vs₃₀ in the project area is mapped to vary somewhere between 600 ft/sec to 2,500 ft/sec, which is consistent with a seismic Site Class C and D designation (see Table 2).

Site Class	Average Shear Wave Velocity for the Upper 30 Meters of Ground ($V_{s_{30}}$	Generic Description
А	> 5,000 ft/s	hard rock
В	2,500 to 5,000 ft/s	rock
С	1,200 to 2,500 ft/s	very dense soil and soft rock
D	600 to 1,200 ft/s	stiff soil
E	< 600 ft/s	soft clay soil

Table 2. Site Classification (ada	pted from ASCE 7-16 Table 20.3-1)
-----------------------------------	-----------------------------------

2.6 Seismotectonics

Major plate boundary faults and lesser-known smaller faults near the project area are included in the U.S. Geological Survey's Fact Sheet 2016-3020 provided in Figure 7. The fact sheet shows the project area is bordered to the north by the Reliz fault (No. 27) and to the south by the Monterey Bay - Tularcitos fault (No. 29). As shown on Figure 5.1, the Chupines and Seaside faults are concealed faults (i.e., faults without a currently visible trace at the ground surface) that have been inferred by some geologists to occur between the Reliz and Monterey Bay-Tularcitos faults. The Chupines fault is considered to be a dextral-reverse slip fault, with both vertical and strike-slip components. Estimates of minimum vertical displacement on faults within the Chupines fault zone range from 600 to 1,000 feet. Relatively minor vertical movement on the fault (i.e., on the order of 600 to 1,000 feet) has been inferred to have internally displaced the Monterey formation near the project area at or near the planned SR218 crossing (Clark et al., 1997); however, its exact location relative to the crossing, if any, is concealed by recent soils, alluvium, and/or manmade fills as described in this report.

Clark et al. (2000) argues for Holocene activity (i.e., activity within the last 11,700 years) on the western extension of the Chupines fault in Monterey Bay based on (1) a report that the Chupines fault cuts Holocene deposits and the sea floor in the bay (McCulloch and Greene, 1989), and (2) the location of earthquake epicenters near the fault (e.g., see Figure 8). However, to-date, evidence has been insufficient for the U.S. Geological Survey (see Bryant, 2001) to map the Chupines fault as anything other than a Quaternary fault (i.e., a fault with displacement within the last 1.6 million years). The California Geological Survey has indicated that the Chupines fault is not well-defined and is not sufficiently active (see Bryant 1985). Consequently, the Chupines fault has not been classified as Holocene-active by the State of California, and the project area is therefore not located within an Earthquake Fault Zone that requires fault investigations pursuant to the Alquist-Priolo Earthquake Fault Zoning Act (see CGS 2018 and the California Public Resources Code, Division 2, Chapter 7.5).

Despite the absence of State of California mapped Holocene-active faults in the project area, the project will be subject to very strong to severe ground shaking during earthquakes on active seismogenic sources in the region. The anticipated peak ground acceleration with a 2% chance of exceedance in 50 years in the project area for a Site Class C/D condition is greater than 0.68g (Figure 9). Anticipated damages from ground shaking with an average peak acceleration in excess of 0.6g are described in Figure 10 for Class X

or above, and include open cracks in cement pavement and asphalt road surfaces or broad fissures in ground.

2.6.1 Liquefaction

Liquefaction is a phenomenon in which soils lose internal strength as a result of increased pore pressure generated by cyclic loading. Cyclic loading is commonly induced by ground shaking during earthquakes. Soils prone to liquefaction are saturated, noncohesive, relatively clay-free silt and sand layers of very loose density. A liquefaction potential map of the project area from Dupre (1990) is provided in Figure 11; it shows that the liquefaction susceptibility in the project area varies from very low to high. The eastern portions of the project area, that are at relatively high elevations, are mapped to have a low liquefaction susceptibility. The portions of the project that are at relatively low elevations (e.g., near Frog Pond and Laguna Del Rey Creek) have a medium to high liquefaction susceptibility. No liquefaction-related ground effects from historic earthquakes have been mapped in the project are (Youd and Hoose, 1978; Tinsley et al., 1998). However, as illustrated in Figure 11, ground settlement from liquefaction during historic earthquakes (e.g., the San Francisco earthquake in 1906 and/or the Loma Prieta Earthquake in 1989) in the region was mapped to have occurred in nearby Laguna Del Rey.

2.6.2 Tsunamis

A map of the project area from the California Emergency Management Agency (2009; Figure 12.1) shows that inundation by a tsunami would come close to, but stop short of, the western end of project. Local tsunami sources considered include offshore movements on reverse-thrust faults, restraining bends on strike-slip faults zone and submarine landslides. Distant tsunami sources that were considered include great subduction zone events that are known to have occurred historically (e.g., like the 1960 Chile and 1964 Alaska earthquakes).

2.7 Flooding

Areas of the project that are located within FEMA's 100-year flood zone, 500-year flood zone, and regulatory floodway areas are illustrated in Figure 12.1. Most of the project area is located in a 500-year flood hazard zone, with exceptions of areas at and near Frog Pond and along Laguna del Rey Creek, which are mapped to be within a 100-year flood zone.

2.8 Sea Level Rise

The Pacific Institute (2009) predicted that sea level rise along the California coast could increase by 55 inches by 2100, even without accounting for ice-melt from the glaciers on Antarctica and Greenland. The National Research Council (NRC, 2012) estimates that the sea level along California will rise by 17 to 66 inches by 2100. The mean sea level in Monterey Bay increased by approximately 0.053 inches per year between 1973 and 2016 (NOAA, 2018). Anticipated flooding from predicted seal-level rise near the project area is shown in Figure 12.2.

3.0 Limitations

This geotechnical data report has been prepared for the exclusive use of GHD and TAMC for portions of the Canyon Del Rey/SR 218 Segment of Fort Ord Regional Trail & Greenway (FORTAG) project in the city of Del Rey Oaks, California, as described herein. The original scope of our geotechnical study was

for the planned SR218 crossing (i.e., exploration borings B-4 and B-5 as mapped in Figure 1). Prior to our fieldwork in August 2021, our scope was expanded to include exploratory borings at the locations of B-1, B-2, B-3, and B-6. This geotechnical data report is based on our understanding of the project at the time of our fieldwork in August of 2021. Subsurface conditions at and between locations of project exploration borings may vary over time from that encountered and logged in the borings. Studies of the absence, existence, and effects of artificial contamination (e.g., from leaking underground storage tanks) and natural environmental conditions (e.g., from naturally occurring asbestos or soil corrosivity) on project construction, if any, are outside of our expertise and are not part of our scope of services. Any reference in this report to related data is solely provided as a value-added service.

The services rendered by McMillen Jacobs Associates have been performed in a manner consistent with the level of care and skill ordinarily exercised by members of the geotechnical profession currently practicing under similar conditions in the same area.

4.0 References

American Society of Civil Engineers (ASCE). 1976. *Subsurface Investigation for Design and Construction of Foundations of Buildings*. ASCE Manuals and Reports on Engineering Practice, No. 56.

American Society of Civil Engineers (ASCE). 2018. Minimum Design Loads for Buildings and Other Structures. ASCE 7-16.

ASTM International:

- ASTM D1586 Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils.
- ASTM D2166 Standard Test Method for Unconfined Compressive Strength of Cohesive Soil.
- ASTM D2487 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
- ASTM D2488. Standard Practice for Description and Identification of Soils (Visual-Manual Procedure.
- ASTM D3080M Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions.
- ASTM D7263 Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens.

Bolt, Bruce A. 1993. Earthquakes: A Primer. San Francisco: W.H. Freeman and Company.

Branum, D., R. Chen, M. Petersen, and C. Wills. 2016 (rev.). Earthquake Shaking Potential for California, California Geological Survey, Map Sheet 48 (Revised 2016).

Bryant, W.A., compiler, 2001, Fault number 145a, Chupines fault zone, Del Rey Oaks section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, <u>https://earthquakes.usgs.gov/hazards/faults/qfaults</u>, accessed 11/04/2021.

Bryant, W.A., 1985, Faults in the Southern Monterey Bay Area, Monterey County; California Division of Mines and Geology (now the California Geological Survey) Fault Evaluation Report FER-167.

California Emergency Management Agency, 2021, Tsunami Inundation Map for Emergency Planning, State of California – County of Monterey. <u>https://www.conservation.ca.gov/cgs/tsunami/maps</u>

California Geological Survey (CGS), 2018, Earthquake Fault Zones, A Guide for Government Agencies, Property Owners/Developers, and Geoscience Practitioners for Assessing Fault Rupture Hazards in California; Special Publication 42.

California State Water Resources Control Board. Geotracker. 2021. http://geotracker.waterboards.ca.gov/.

Clark, J.C., Brabb, E.E., and L.I. Rosenberg 2000, Geologic map of the Spreckles 7.5-minute quadrangle, Monterey County, California: U.S. Geological Survey Miscellaneous Field Study MF-2349.

Clark, J.C., Dupre, W.R., and L.I. Rosenberg 1997, Geologic Map of the Monterey and Seaside 7.5minute Quadrangles, Monterey County, California: U.S. Geological Survey Open-File Report 97-30. (don't include since shows landslide)

Dibblee, T.W. Jr., and J.A. Minch. 2007. Geologic Map of the Monterey and Seaside Quadrangles, Monterey County, California, Dibblee Geology Center Map #DF-346.

Dibblee, T.W. Jr., J.C. Clark., H.G. Greene., and O.E. Bowen, Jr. 1974. Preliminary Geologic Map of the Monterey and Seaside 7.5-minute Quadrangles, Monterey County, California, U.S. Geological Survey.

Dupre, W.R., 1990, Maps showing geology and liquefaction susceptibility of Quaternary deposits in the Monterey, Seaside, Spreckels and Carmel Valley Quadrangles, Monterey County, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-2096.

Federal Emergency Management Agency (FEMA). 2017. National Flood Insurance Program, Flood Insurance Rate Map, Monterey County, California., Panel 326 of 2050, Map No. 06053C0326H. https://msc.fema.gov/nfhl.

Federal Emergency Management Agency (FEMA). 2009. National Flood Insurance Program, Flood Insurance Rate Map, Monterey County, California., Panels 327, 328, and 329 of 2050, Map Nos. 06053C0327G, 06053C0328G, and 06053C0329G. <u>https://msc.fema.gov/nfhl</u>.

Hartwell, S.R., S.Y. Johnson., C.W. Davenport., and J.T. Watt. 2016. Offshore and Onshore Geology and Geomorphology, Offshore of Monterey Map Area, California, U.S. Geological Survey, Open-File Report 2016-1110, Sheet 10 of 10.

Heuer, R.E. 1974. Important ground parameters in soft ground tunneling. In *Proc. Of Specialty Conference on Subsurface Exploration for Underground Excavation and Heavy Construction*. New York, NY: ASCE, 41–55.

McCulloch, D.S., and Green, H.G., 1989, Geologic map of the central California continental margin, in Greene, H.G., and Kennedy, M.P., eds., Geology of the central California continental margin: California Division of Mines and Geology California Continental Margin Geologic Map Series, Map 5A, scale 1:250,000.

National Oceanographic Atmospheric Administration (NOAA), 2018. Mean Sea Level Trend, 9413450 Monterey, California. https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?stnid=9413450#.

National Research Council (NRC), 2012. Sea-Level Rise for Coasts of California, Oregon, and Washington: Past, Present, and Future. The National Academies Press, Washington, D.C.

Pacific Institute, California Climate Change Center, 2009. The Impacts of Sea-Level Rise on the California Coast.

Spall, H., and D.C. Schnabel. 1989. Earthquakes & Volcanoes, 21(1). U.S. Geological Survey.

Tinsley, J.C. III, Egan, J.A., Kayen, R.E., Bennett, M.J., Kropp, A., and T.L. Holzer, 1998, Appendix: Maps and Descriptions of Liquefaction and Associated Effects, in T.L. Holzer, ed., The Loma Prieta, California, Earthquake of October 17, 1989-Liquefaction; U.S. Geological Survey Professional Paper 1551-B.

U.S. Department of Agriculture (USDA) and National Agriculture Imagery Program (NAIP). 2005.

U.S. Department of Agriculture (USDA). Flight Dates. 5/14/1956 and 8/18/1949.

U.S. Geological Survey (USGS). 2016. Fact Sheet 2016-3020. https://pubs.usgs.gov/fs/2016/3020/fs20163020.pdf.

U.S. Geological Survey (USGS). 2012. 7.5-min Quadrangle for Seaside.

U.S. Geological Survey (USGS). Flight Date. 7/18/1974.

U.S. Geological Survey (USGS). 1947. 7.5-min Quadrangle for Seaside.

U.S. Geological Survey (USGS). 1941. 30-min Quadrangle for Monterey.

U.S. Geological Survey (USGS). 1913. 30-min Quadrangle for Monterey.

U.S. Soil/Natural Resources Conservation Service (NRCS). 2020. Web Soil Survey, U.S. Department of Agriculture. http://websoilsurvey.sc.egov.usda.gov.

Youd, T.L., and S.N. Hoose, 1978, Historic ground failures in northern California triggered by earthquakes; U.S. Geological Survey Professional Paper 993.

Figures

Atterber	g Limits		Seasonal	Risk of Corrosion					
Liquid Limit	Plasticity Index	Depth to Bedrock (ft)	High Water Table (ft)	Uncoated Steel	Concrete				
0-25	NP-6								
0-23	NP-6	25.50	NOR	Low	Modorato				
0-23	NP-6	5.5-5.0	NON	LOW	wouerate				
0-27	NP	NOR	NOR	Moderate	Moderate				
0-24	NP	NOR	NOR	Low	Moderate				
-	-	NOR	0-6.0	High	Moderate				

AVERAGE PE VELOCITY (cm/s)	EAK	MODIFIED MERCALLI INTENSITY VALUE AND DESCRIPTION	AVERA ACCEI (gravity	AGE PEAK LERATION 9.80 m/s ²)		
	I. Not circu	felt except by a very few under especially favorable umstances.				
	II. Felt of bu	only by a few persons at rest, especially on upper floors ildings. Delicately suspended objects may swing.				
	III. Felt build Stand truck	quite noticeable indoors, especially on upper floors of ings, but many people do not recognize it as an earthquake. ding vehicles may rock slightly. Vibration like passing of a Duration estimated.				
1 - 2	IV. Durin some make a hea	ng the day felt indoors by many, outdoors by few. At night e awakened. Rattling of dishes, windows, and doors; walls e creaking sounds. Hanging objects swing. Sensation like avy truck passing. Standing vehicles rocked noticeably.	0.015	5 - 0.02g		
2 - 5	V. Felt t and s over some trem	by nearly everyone, many awakened. Some dishes, windows so on broken; cracked plaster in a few places; unstable objects turned. Disturbances of trees, poles and other tall objects etimes noticeable. Pendulum clocks may stop. Buildings bled throughout.	0.03	- 0.04g		
5 - 8	VI. Felt t heav chim slight some	by all, many frightened and run outdoors. Some moderately y furniture moved; a few instances of fallen plaster and damaged neys. Trees, bushes, shaken slightly to moderately. Damage t in poorly constructed buildings. Broken dishes, glassware and e windows. Moved furnishings and overturned furniture.	0.06	- 0.07g		
8 - 12	VII. Even desig struc chim vehic wind	ybody runs outdoors. Damage negligible in buildings of good in and construction; slight to moderate in well-built ordinary tures; considerable in poorly built or badly designed structures; neys cracked to considerable extent. Noticed by persons driving cles. Waves on ponds, lakes, running water. Broke numerous ows, heavy furniture overturned. Dislodged bricks and stones.	0.10	- 0.15g		
20 - 30	VIII. Dama ordin built chimi furnit Char	age slight in specially designed structures; considerable in ary substantial buildings with partial collapse; great in poorly structures. Panel walls thrown out of frame structures. Fall of neys, factory stacks, columns, monuments, walls. Heavy ture overturned. Sand and mud ejected in small amounts. nges in well water. Persons driving vehicles disturbed.	0.25 - 0.30g			
45 - 55	IX. Dam fram with cons	age considerable in specially designed structures; well-designed e structures thrown out-of-plumb; great in substantial buildings, partial collapse. Buildings shifted off foundations. Ground cracked spicuously. Underground pipes broken. Reservoirs threatened.	0.50 - 0.55g			
> 60	X. Som frame Railre steep over pave	e well-built wooden structures destroyed; most masonry and e structures destroyed with foundations; ground badly cracked. oad rails bent. Landslides considerable from river banks and p slopes. Shifted sand and mud. Water splashed, slopped banks. Reservoirs greatly damaged. Open cracks in cement ments and asphalt road surfaces.	>	0.60g		
	XI. Few, destr comp groun dama	if any, (masonry) structures remain standing. Bridges royed. Broad fissures in ground. Underground pipelines pletely out of service. Earth slumps and land slips in soft nd. Rails bent greatly. Dams, dikes, embankments severly aged. Destroyed large well-built bridges.				
	XII. Dama great bank vertic unde grour	age total. Practically all works of construction damaged by or destroyed. Landslides, falls of rock, slumping of river s extensive. Fault slips in firm rock, with notable horizontal cal off-set displacements. Water channels, surface and rground disturbed and modified greatly. Waves seen on nd surfaces.				
EFERENCE: "Earth" "Earth	nquakes & Volcanoes," nquakes A Primer," Bru	Volume 21, Number 1, 1989 ce A. Bolt, W.H. Freeman and Company, San Francisco, Copyright 1993	3.			
Mc	MILLEN	GHD		Figure		
JA ASS	COBS	Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Del Rev Oaks, California		10		
le No. 6231.0	November 2021	Modified Mercalli Intensity Scale				

Appendix A

LEGEND FOR BORING LOGS IN APPENDIX B

X Grab sample

- 2" I.D./2.5" O.D. Split spoon sampler (SSS) (ASTM D1586)
- 1.4" I.D./2" O.D. Standard Penetration Test (ASTM D1586) sampler (SPT)
- Depth of free groundwater seepage first ∇ noted into boring during drilling
- Depth of free groundwater level measured V in boring after drilling

CONSTITUENT DESCRIPTIONS									
DESCRIPTION	CRITERIA								
TRACE FEW LITTLE SOME MOSTLY	less than 5% 5% to 10% 15% to 25% 30% to 45% 50% to 100%								
Reference: ASTM	D2488. Note 15								

RELATIVE DENS	ITY	<u>CONSISTENCY</u>								
SANDS AND GRAVELS	SPT, N	SILTS AND CLAYS	SPT, N	UNCONFINED COMPRESSIVE STRENGTH, tsf						
VERY LOOSE	0-4	VERY SOFT	0-2	0-0.25						
LOOSE	4-10	SOFT	2-4	0.25-0.50						
MEDIUM DENSE	10-30	MEDIUM STIFF	4-8	0.50-1.00						
DENSE	30-50	STIFF	8-15	1.00-2.00						
VERY DENSE	50+	VERY STIFF	15-30	2.00-4.00						
		HARD	30+	>4.00						
Reference: Terzaghi, K. and Peck, R., SOIL MECHANICS IN ENGINEERING PRACTICE, 2nd ed., John Wiley and Sons. New York. 1967. Page 341 Table 45.1 and pp. 347 Table 45.2										

MOISTURE CONDITION CRITERIA DESCRIPTION DRY Absence of moisture, dusty, dry to the touch MOIST Damp but no visible water WET Visible free water, usually soil is below water table Reference: ASTM D2488, Table 3 - Criteria for Describing Moisture Condition

GROUND BEHAVIOR	CLASSIFICATION							
Ground that can be excavated without initial support to shallow depths (typically less than 10 feet) and where shoring can be installed before the ground starts to move. For example, unfissured hard clay when not highly overstressed.	Firm							
Ground of which chunks or flakes begin to fall off excavation walls. If raveling starts within a few minutes of excavation then it is "fast" raveling; otherwise, it is "slow" raveling. Silts and sands with clay binder may be fast raveling. Stiff fissured clays may be slow or fast raveling depending upon the degree of overstress.	Raveling							
Ground that squeezes or plastically extrudes into excavations without visible fracturing. Can occur at shallow to medium depth in very soft to medium stiff clay, and can occur in stiff to hard clay under high overstress.	Squeezing							
Ground consisting of clean dry granular material (e.g., sand and gravel) that moves by gravity to its angle of repose.	Running							
Ground in a fluid-like condition (e.g., a disturbed mixture of predominantly silt, sand and/or gravel with water), that flows across pressure gradients.	Flowing							
Ground that expands in volume due to the absorption of water (e.g., clays).	Swelling							
Reference: Modified from Heuer, R.E., 1974, Important ground parameters in soft ground tunneling, Subsurface exploration for underground excavation and heavy construction. New England College, Henniker, New Hampshire, American Society of Civil Engineers, New York, P. 41-55								

1. Project borings were made with either (a) a Mobile B-24 drill rig using 5-inch diameter continuous flight solid stem augers, (b) hydraulic portable drill using 3-inch diameter continuous flight solid stem augers, or (c) a SIMCO 2400 SK-1 Longstroke drill rig uisng 7-inch diameter continuous hollow stem augers as indicated on the respective log. Lines separating strata in the logs represent approximate boundaries and are dashed where strata change depth is less certain. Strata change may be gradual across the boundary lines logged. Logged groundwater depths are subject to limitations described in the text of the report.

2. Penetration Resistance (blows/ft.) are the last 12 inches of an 18-inch drive using either a 140-pound cathead sampling hammer falling 30 inches per blow unless noted otherwise. The Penetration Resistance values noted on the logs are actual blows per foot of penetration for the respective sampler type (e.g., MCS sampler penetration resistance blow counts have not been reduced to SPT sampler "N" values).

NOTES:

GHD

Figure

Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Monterey, California

Boring Log Legend

(1 of 2)

LEGEND FOR BORING LOGS IN APPENDIX B (Cont'd)

CRITE	RIA FOR ASSIGN	ING GROUP SYMBOLS AN	D GROUP NAM	ES [^]			GROUP SYMBOL	GROUP NAME ^B		
			Clean Gravels	Cu≥	≥ 4 and $1 \le Cc$	≤ 3 ^E	GW	Well-graded gravel F		
COARSE	-GRAINED	GRAVELS	< 5% fines ^C	Cu <	4 and/or 1 > Cc >	3 ^E	GP	Poorly graded gravel F		
More than	50% retained	More than 50% of coarse fraction retained on No. 4 sieve	Gravels with Fines	Fines	classify as ML or	MH	GM	Silty gravel ^{F,G,H}		
on No. 200) sieve		> 12% fines ^C	Fines	classify as CL or (СН	GC	Clayey gravel F,G,H		
			Clean Sands	Cu ≥	6 and 1 <u>< C</u> c < <u>3</u>	E	SW	Well-graded sand		
		SANDS	< 5% fines ^D	Cu <	6 and/or 1 > Cc >	3 ^E	SP	Poorly graded sand		
		passes No. 4 sieve	Sands with Fines	Fines	classify as ML or	МН	SM	Silty sand G,H,I		
			> 12% fines ^b	> 12% fines ^b Fines classify as			SC	Clayey sand ^{G,H,I}		
FINE-GR	AINED SOILS		Inorganic	PI > 7	plots on or above	"A" line J	CL	Lean clay ^{K,L,M}		
50% or more passes SILTS AND CLAYS		SILTS AND CLAYS		PI < 4	I plots below "A" li	ne J	ML	Silt ^{N,L,M}		
Ine No. 20	o sieve		Organic		d limit-oven dried	< 0.7	5 OL	Organic Clay KLM.0		
					ts on or above "A"	lino	<u>сп</u>	Eat day KLM		
			Inorganic		ts below "A" line		мн	Flastic silt ^{K,L,M}		
		Liauid limit > 50		Liquic	limit-oven dried			Organic Clay ^{K,L,M,P}		
			Organic	Liquic	l limit-not dried	< 0.7	бОН	Organic Silt K,L,M,Q		
HIGHLY C	RGANIC SOILS		Primarily organic ma	atter, dark col	or and organic odd	or	РТ	Peat		
NOTES	<u>.</u>									
Α	Based on the mate	rial passing the 3-inch (75mm) sie	eve.		1	PLAS				
в	If field sample cont	ained cobbles or boulders, or both	l,	lerm	PI	Dry Stre	ength	Field Test		
_	add "with cobbles o	or boulders, or both" to group nam	e.*	Nonplasti	ic 0-3	Very lo	ow Falls ap	part easily		
С	Gravels with 5% to	12% fines require dual symbols:		Slightly pla	stic 3-15	Sligh	t Easily o	crushed with fingers		
	GW-GC well-grad	ed gravel with clay		Highly plas	istic 30 or more	Mediu		to crush ible to crush with fingers		
	GP-GM poorly gra	aded gravel with silt		Reference: S	Sowers George F	ntroductory Soil	Mechanics and Fou	indations:		
_				C	Geotechnical Engine	ering, 4th ed., N	lacmillan Publishing	J Co., Inc.,		
U	Sands with 5% to 1 SW-SM well-grad	ed sand with silt								
	SW-SC well-grade	ed sand with clay				<u>G</u>	RAIN SIZE			
	SP-Sivi poorly gra	ded sand with clay			Group	Texture	Sieve	Dimension, mm		
	D 60	$(D_{30})^2$			Boulder	-	> 12"	> 305		
E	$Cu = \frac{00}{D_{10}}$	Cc = 1000000000000000000000000000000000000		-	Cobble	-	3"	75		
F	If soil contains > 15	5% sand, add "with sand" to group	name.		Gravel	Fine	3/4" No 4	4 75		
G	If fines classify as (CL-ML, use dual symbol GC-GM,	or SC-SM.	-		Coarse	No. 10	2.00		
н	If fines are organic	, add "with organic fines" to group	name.		Sand	Medium	No. 40	0.425		
	If soil contains > 15	5% gravel add "with gravel" to gro	up name	-		Fine	No. 200	0.075		
	If Atterberg limite p	lat in hatshad area, asil is a CL M			Fines	Clay	< No. 200	0.002		
J	II Allerberg Imits p	IOLINI NAICHEO AREA, SOILIS A CL-IVI		. 1	Reference: modifie	d from ASTM D2	2487	40.002		
ĸ	If soil contains 15% whichever is predo	b to 29% plus No. 200,add "with sa minant.	and" or "with gravel	", L *The lorg	ost particle the	could have	boon ratriovad	from a baring is a		
L	lf soil contains ≥ 30)% plus No.200, predominantly sa	nd, add "sandy" to	function of	of the diameter	of the boring	g, drill bit, and s	ampler. Intact cobble-		
	group name.			and bould	der-size particle	s, if any, are	too large to re	trieve from small diameter		
М	If soil contains \geq 30	0% plus No.200, predominantly gra	avel, add "gravelly"	porings p	(e.a cobble- a	nd boulder-s	ierefore, there r size) in the borir	nay have been larger has than were retrieved in		
	to group name.			samples,	observed in dr	ill cuttings ar	nd consequently	y logged in borings.		
N	PI <u>></u> 4 and plots on	or above "A" line.								
0	PI < 4 or plots belo	w "A" line.								
Р	PI plots on or abov	e "A" line.								
Q	PI plots below "A" I									
								Figure		
					GUD					
		ORS	Transpo	ortation Ag	gency for Mo	nterey Co	unty			
			FURIAG	- Canvo	n Del Rey/Sl	KZ18 Seq	ment			

Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Monterey, California

Boring Log Legend

File No. 6231.0

November 2021

ASSOCIATES

FRESH - Rock Inc.th. registrate bright, forge status way stroke three days and the stroke status in the stroke		WEATHERING C	RITERIA	STRENGTH							
Peck rings under harmer if cyclatine. VERY SUGHT - Bock generally fresh, joints alianced, care by chort may show thing cyclatine, usual nature is compared and the second secon	FRESH	- Rock fresh, crystals bright, few	v ioints show slight staining.	PLASTIC	- moldable						
VERY SLIGHT - Rock approach frage has based at an edge of the way that was and the posterior of the structure of		Rock rings under hammer if cr	ystalline.	FRIABLE	- crumbles easily by rubb	oing with fingers					
day college, bystatis in torout note: show target. Note may under tammer i dystatis a day heavy target of the source of the so	VERY SLIGHT	- Rock generally fresh, joints sta	ained, some joints may show thin	WEAK	- an unfractured specime	en of such material					
SUGIT - Pood generality fresh, joints stained, and discolation ordered is into node up for this . Joints may contained nodes are concessional fieldspace repeats are duil and discolated descented. STROM - spearment with stained and stained and discolated descented. MODERATE - Syndition costs of those stained. The discolated descented descen		clay coatings, crystals in broke Rock rings under hammer if cr	en face show bright. ystalline.	MODERATELY	nammer blows a few heavy preaking						
MODERATE - Significant portions of rack show discoloration and weathering directs. In granited rocks, most fieldspars are dual and discolored, and majority show kaolinization. - Significant portions of rack show discoloration and weathering directs, most fieldspars are dual and discolored and majority show kaolinization. MODERATE - All rocks except quarts discolored or stained. To granited rocks, most fieldspars and and can be excepted in strength the text rock. - Desception of the text rock of the text rock of the text rock. SEVER - All rocks except quarts discolored or stained. Fock "fabric" dear rocks, all fedgaps and and can be excepted and can be excepted and can be excepted and can be excepted and can be strength to strong rock usually left. - Desception of the text rock of	SLIGHT	 Rock generally fresh, joints sta into rock up to 1 inch. Joints n some occasional feldspar crys Crystalline rocks ring under ha 	ained, and discoloration extends nay contain clay. In granitoid rocks tals are dull and discolored. mmer.	tends bid rocks 1. STRONG - specimen will withstand ringing hammer blows b larger fragments with dif							
Significant loss of strength as compared with riskin rock. AIL rocks except quartz discolated or stained. In granitodi rocks, response to sol strength and can be exceeded with geologists pick. Rock goes "clurk" when struck. Description Description Description SEVERE - AII rocks except quartz discolated or stained. In granitodi rocks, all fieldspers kaainizad to some extent. Some fragments of throng discombel or visiting or kursuly left. Inscription Severe the source of quartz discolated or stained. Rock "fabric" dear discombel or visiting or kursuly left. VERY SEVERE - AII rocks except quartz discolated or stained. Rock "fabric" dear discombilities of strong rock usualy left. Severe the source of quartz discolated or stained. Rock "fabric" dear discombilities of strong rock usualy left. Discontinuumes VERY SEVERE - AII rock except quartz discolated or stained. Rock "fabric" dear discombilities of strong rock usualy left. Discontinuumes Discontinuumes COMPLETE - Rock except quartz discolated or stained. Rock "fabric" dear discombilities of strong rock usualy left. Discontinuumes Discontinuumes WERY HARD - Canne source of water with write profix. Double source of water discolate or strong or write. Discontinuumes Discontinuumes WERY HARD - Can be source with write profix. Complex profits pick. There is the profit of a geologist pick. Hand spectrems is no be deatable by from prostation or gene and undrastoge source or write and there prokis pick point of a geologist pick. Hand spectrems is	MODERATE	- Significant portions of rock sho effects. In granitoid rocks, mo some show clayey. Rock has	bw discoloration and weathering st feldspars are dull and discolored; dull sound under hammer and shows	VERY STRONG	- specimen will resist hea hammer blows and will and small flying fragme	avy ringing yield only dust nts with difficulty					
MODERATELY - All rocks except quart discolared or stained. In granitid rocks, Rock as hows severe loss of strangth and an excavated with geologists pick. Rock gos "curves" were found in the excavated with geologist spick. Hand social contents in a several hard blow of a spice of the except quart discolared or stained. Rock "fabric" dear nodes all feldpare isolinization, and the excavated with official transmission. The excavated of the except quart discolared or stained. Rock "fabric" dear nodes all feldpare isolinization and regists being rocks. VERY SEVERE - All rock scoopt quart discolared or stained. Rock "fabric" dear nodes all feldpare isolinization and regists being rocks. VERY SEVERE - All rock scoopt quart discolared or stained. Rock "fabric" dear nodes all feldpare isolinization. COMPLETE - Rock reduced to "sol". Rock "fabric" not discernable or discernable or him and earther to guest discolared in the state of the sol in small earther of local controls. Sol are the sol in the s		significant loss of strength as c	compared with fresh rock.	ANGLE FROM	HORIZONTAL DESC	RIPTION					
SEVERE - All rocks except quart discolored or stained. Rock "fabric" discription. Summit with the strength to strong extent. Some fragments of strong rock usually left. Discontinuities VERY SEVERE - All rock except quart discolored or stained. Rock "fabric" discription. Summit scattered locations. Out at 2 marks discription. Some fragments of discription. Some fragments discription. Some fragments discription. So	MODERATELY SEVERE	 All rocks except quartz discolo all feldspars dull and discolore Rock shows severe loss of stre geologist's pick. Rock goes "c 	red or stained. In granitoid rocks, d and majority show kaolinization. ength and can be excavated with lunk" when struck.	0 5-3 35 55 85	5° horiz 55° shall 55° mode 85° steep 90° vertic	contal ow erate o cal					
Discontinuumes Discontinuumes VERY SEVER: - All rock except quartz discolored or stained. Rock "fabric" discomable, but mass effectively reduced to "soil" with only fragments of strong rock treamsing. SPACING ERACTURING BEDDING COMPLETE: - Cock reduced to "soil". Rock "fabric" not discomable or discomable only in small scattered locations. Quartz may be present as dikes or stringers. Notes that the source of	SEVERE	 All rocks except quartz discolo and evident, but reduced in st 	red or stained. Rock "fabric" clear rength to strong soil. In granitoid								
Subscription SPACING FROTURING EDDNG VERY SEVERE - All rock except quartz discolored or stained. Rock "fabric" discomble or discomble orediscomble or discomble orediscomble or discomble or disco		rocks, all feldspars kaolinized t	to some extent. Some fragments of		DISCONTINUITIES						
VERY SEVERE -All rock except quart discorded or stained. Rock "fabric" discernible or discernible discernible or discernible or discernible or discernible o		Strong fock usually left.		SPACING	FRACTURING	BEDDING					
Tagments of strong rock remaining. Completer Field of strong rock remaining. Completer Field of strong rock remaining. COMPLET - Rock reduced to "soil". Rock "fabric" not discernible of discernible only in small scattered locations. Quartz may be present as dikes or stringers. Completer Completer <th>VERY SEVERE</th> <th> All rock except quartz discolore discernible, but mass effective </th> <th>ed or stained. Rock "fabric"</th> <th>Less then 1/2 inch</th> <th>crushed</th> <th>laminated</th>	VERY SEVERE	 All rock except quartz discolore discernible, but mass effective 	ed or stained. Rock "fabric"	Less then 1/2 inch	crushed	laminated					
COMPLETE - Rock reduced to "soil". Rock "fabric" not discernible of discernable only insmall scattered locations. Quartz mays be present as dikes or stringers. 11 foot to 3 feet in moderately close indium. ComPLETE - Rock reduced to "soil". Rock "fabric" not discernible of discernable only insmall scattered locations. Quartz mays be present as dikes or stringers. 11 foot to 3 feet in moderately close indium. VERY HARD - Cannot be scratched with knife or pick only with difficulty. Hard blow of nammer required to detach hand specimen. ARDD - Can be scratched with knife or pick. Gouges or grouves to geologist's pick. Hand specimens can be detached by moderate blow. Statute surface and mineralogy/hardness may be noted MEDIUM - Can be grouved or gouged 1/16 inch deap by firm pressure on knife or pick point. Can be excavated in small chips to pieces about 1/16 inch deap by firm pressure on knife or pick point. Can be excavated in small chips to pieces about 1/6 inch deap by firm pressure on prograd or gouged or grouved readily with knife or pick point. Can be excavated in small chips to pieces about 1/16 inch deap by firm pressure on prograd or gouged or grouved readily with knife or pick point. Can be excavated in chips to pieces can be torken with firger pressure. VERY SOFT - Can be grouved or gouged 1/16 inch deap by firm pressure on knife. Pieces Linch or more in thickness can be torken with firger pressure. DESCRIPTION WEILUM - Can be grouved in a knife. Can be excavated readily with point of pick, Pieces Linch or more in thickness can be torken with firger pressure. DESCRIPTION Recure witace first straines </th <th></th> <th>fragments of strong rock remai</th> <th>ining.</th> <th>¹/₂ inch to 2 inches</th> <th>very close</th> <th>very thin</th>		fragments of strong rock remai	ining.	¹ / ₂ inch to 2 inches	very close	very thin					
COMPLETE - Rock reduced to sain. Froder factor for Disked minded in disked minded in disked minded in the present as dikes or stringers. Indentified on the secret of		Deals reduced to "easil" Deals"	Kabuja" pot diagonijalo pr	2 incres to 1 loot		unn					
be present as dikes or stringers. Wide Wi	COMPLETE	discernable only in small scatt	tered locations. Quartz may	2 foot to 10 foot	wide	thick					
HARDES Present of the scratched with knife or pick only with difficulty. Present of the scratched with knife or pick only with difficulty. MARD Can be scratched with knife or pick only with difficulty. Description Start of the scratched with knife or pick. Gouges or grooves to geologists pick. MODERATELY Can be scratched with knife or pick. Gouges or grooves to geologists pick. Description Start of the scratched with knife or pick. Gouges or grooves to geologists pick. MEDIUM Can be scratched with knife or pick. Gouges or grooves to geologists pick. Description Start of the scratched with knife or pick. Gouges or grooves to geologists pick. MEDIUM Can be grooved or gouged 1/16 inch deep by firm pressure on hind specimens can be detached by moderate blow. Start of the scratched with knife or pick point. Can be excavated in small chips to pieces and by forger pressure. Start of the point of a geologists pick. VERY SOFT Can be grooved or gouged 1/16 inch deep by firm pressure on hind scratche duity with point of a geologist spick. Start of the point of a geologiest pick. Start of the point of a geologiest pick. VERY SOFT Can be gouged or grooved readily with near or in thickness can be broken by finger pressure. Start of the point of a geologiest pick. Start of the point of a geologiest pick. VERY SOFT Can be carved with a knife. Can be excavated readily with point for pick, pickes 1-inch or more in thickness can be broken by finger grooved		be present as dikes or stringer	S.	More than 10 feet	very wide	very thick					
INTURESE VERY HARD - Cannob escratched with knife or pick. Only with difficulty. Hard blow of hammer required to detach hand specimen. ISUETURE DESCRIPTION MARD - Can be scratched with knife or pick. Gouges or grooves to hard blow. optimum of separation, staining or coatings on fracture surfaces, and fracture surface. optimum of separation, staining or coatings on fracture surfaces, and fracture surface. MEDIUM - Can be scratched with knife or pick. Couges or grooves to hard blow. optimum of separation, staining or coatings on fracture surface. MEDIUM - Can be scratched or gouged 1/16 inch deep by firm pressure on sebuti-thch maximum size by hard blows of the point of a geologists pick. Imtee or pick point. Can be excavated in small chips to pieces about 1-hch maximum size by hard blows of the point of a geologists pick. Imtee or pick point. Can be excavated in small chips to piece about 1-hch maximum size by hard blows of the point of a geologists pick. Imtee or pick point. Can be excavated readily with point of pick. Pieces 1-inch or more in thickness can be broken with finger pressure. Can be scratched readily by fingernail. SURFACE stepped mear normal steps and ridges occur on fracture surface MERIUM: Suburface Investigation for Design and Construction of Foundations of Buildings, ASCE-Menuals and Reports on Engineering Practice-No. 56; 1976, by American Society of Civil Engineers. Surface - Canyon Del Rey/SR218 Segment Morearely rough asperities are clearly visible and racture visible and can be fet Wisible and can be fet Wisible and can be fet Wisible and can b					very mae	very thiot					
VERY HARD - Cannot be scratched with knife or sharp pick. Breaking of hard specimens requires several hard blows of geologists pick. STRUCTURE DESCRIPTION HARD - Can be scratched with knife or pick only with difficulty. Hard blow of hammer required to detach hand specimen. mount of separation, staining or coatings on fracture surfaces, and fracture surface moisture conditions may be noted MEDIUM - Can be scratched with knife or pick, Gouges or grooves to kinfe or pick point. Can be grooved or gouged 1/16 inch deep by firm pressure on knife or pick point. Can be excavated in small chips to pieces servel inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure. SOFT - Can be gouged or grooved readily with knife or pick point. Can be excavated readily with knife or pick point. Can be excavated readily by fingermail. SURFACE DESCRIPTION VERY SOFT - Can be carved with a knife. Can be excavated readily by fingermail. Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civ											
HARD - Can be scratched with knife or pick only with difficulty. MODERATELY - Can be scratched with knife or pick. Gouges or grooves to 'Ainch deep can be excavated by hard blow of point of a geologist's pick. amount of separation, staining or coatings on moisture conditions may be noted MEDIUM - Can be grooved or gouged 1/16 inch deep by firm pressure on knife or pick point. Can be excavated in small chips to pieces about 1-inch maximum size by hard blows of the point of a geologist's pick. healed degree of healing, (i.e., partial or complete), thickness and type of filling may be noted SOFT - Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure. SURFACE DESCRIPTION near normal steps and ridges occur on fracture surface VERY SOFT - Can be carved with a knife. Can be excavated readily with point of pick. Pieces 1-inch or more in thickness can be broken by finger pressure. DESCRIPTION near normal steps and ridges occur on fracture surface Reference: Substrace Investigation for Design and Construction of Foundations of finger pressure. Can be scratched readily by fingernail. Sightly rough small apperities are dearty visible and fracture visible and can be felt Buildings, ASCE-Manuals and Reports on Engineering Practice-No.56, 1976, by American Society of Civil Engineers. Stepped mean cormal steps and ridges occur on fracture surface visible and can be felt Buildings			<u>.</u>		APERTURE						
 PARD - Carl be scratched with knife or pick. Bouges or grooves to ¹/₄ inch deep can be excavated by hard blow of point of a geologist's pick. Pland specimens can be detached by moderate blow. MEDIUM - Can be grooved or gouged 1/16 inch deep by firm pressure on knife or pick point. Can be excavated in small chips to pieces about 1-inch maximum size by hard blows of the point of a geologist's pick. SOFT - Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in size by moderate blows of a pick point. Small thin pieces can be broken by fingr pressure. VERY SOFT - Can be caved with a knife. Can be excavated readily with point of pick. Pieces 1-inch or more in thickness can be broken by fingr pressure. VERY SOFT - Can be caved with a knife. Can be excavated readily with point of pick. Pieces 1-inch or more in thickness can be broken by finger pressure. Can be scratched readily by fingremail. Reference: Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. File No. 6231.0 November 2021 November 2021 	VERY HARD	 Cannot be scratched with knift specimens requires several h 	e or sharp pick. Breaking of hand ard blows of geologist's pick.	STRUCTURE	APERTURE DESCRIPTION						
MODERATELY HARD - Can be scratched with knife or pick. Gouges or grooves to / inch deep can be excavated by hard blows of point of a geologist's pick. Hand specimens can be detached by moderate blow. healed degree of healing, (i.e., partial or complete), thickness and mineralogy/hardness may be noted MEDIUM - Can be grooved or gouged 1/16 inch deep by firm pressure on hnife or pick point. Can be excavated in small chips to pieces about 1-inch maximum size by hard blows of the point of a geologist's pick. filled degree of filling, (i.e. partial or complete), thickness and type of filling may be noted SOFT Can be grouped readily with knife or pick point. Can be excavated in chips to pieces several inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure. <u>SUFFACE</u> <u>DESCRIPTION</u> near normal steps and ridges occur on fracture surface rough large, angular asperities can be seen noderately rough asperities on the fracture surface visible and can be fielt Reference: Suburface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Secondations silghtly rough asperities, smooth to touch polished File No. 6231.0 November 2021 Transportation Agenery fon Mon	VERY HARD	Cannot be scratched with knift specimens requires several h	e or sharp pick. Breaking of hand ard blows of geologist's pick.	STRUCTURE tight	APERTURE DESCRIPTION no visible separation						
MEDIUM - Can be grooved or gouged 1/16 inch deep by firm pressure on knife or pick point. Can be excavated in small chips to pieces ageologist's pick. filled degree of filling, (i.e. partial or complete), thickness and type of filling may be noted SOFT - Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure. SURFACE DESCRIPTION VERY SOFT - Can be carved with a knife. Can be excavated readily with point of pick. Pieces 1-inch or more in thickness can be broken with finger pressure. Can be scratched readily by fingernail. Discription mear normal steps and ridges occur on fracture surface Reference: Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Poundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. moderately cough extreamly smooth and shiny File No. 6231.0 November 2021 Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218	VERY HARD HARD	 Cannot be scratched with knift specimens requires several h Can be scratched with knife o Hard blow of hammer required 	e or sharp pick. Breaking of hand ard blows of geologist's pick. r pick only with difficulty. d to detach hand specimen.	<u>STRUCTURE</u> tight open	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may b	ining or coatings fracture surface					
SOFT - Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure. SURFACE Stepped DESCRIPTION near normal steps and ridges occur on fracture surface VERY SOFT - Can be carved with a knife. Can be excavated readily with point of pick. Pieces 1-inch or more in thickness can be broken with finger pressure. Can be scratched readily by fingernail. Iarge, angular asperities can be seen Reference: Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. smooth to touch to touch to polishe extraamly smooth and shiny File No. 6231.0 November 2021 Reference: November 2021 Bedrock Descriptors	VERY HARD HARD MODERATELY HARD	 Cannot be scratched with knif specimens requires several h Can be scratched with knife o Hard blow of hammer required Can be scratched with knife o ¼ inch deep can be excavate geologist's pick. Hand specir blow. 	e or sharp pick. Breaking of hand and blows of geologist's pick. r pick only with difficulty. d to detach hand specimen. r pick. Gouges or grooves to d by hard blow of point of a mens can be detached by moderate	STRUCTURE tight open healed	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may b degree of healing, (i.e., pa thickness and mineralogy may be noted	ining or coatings fracture surface be noted artial or complete), /hardness					
SOFT - Can be gouged or grooved readily with knife or pick point. Can be excavated in chips to pieces several inches in size by moderate blows of a pick point. Small thin pieces can be broken by finger pressure. SURFACE DESCRIPTION VERY SOFT - Can be carved with a knife. Can be excavated readily with point of pick. Pieces 1-inch or more in thickness can be broken with finger pressure. Can be scratched readily by fingernail. Image: Angular asperities can be seen Reference: Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Poundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engine	VERY HARD HARD MODERATELY HARD MEDIUM	 Cannot be scratched with kniff specimens requires several h Can be scratched with knife o Hard blow of hammer required Can be scratched with knife o ¼ inch deep can be excavate geologist's pick. Hand specir blow. Can be grooved or gouged 1/4 knife or pick point. Can be exabout 1-inch maximum size by geologist's pick. 	e or sharp pick. Breaking of hand ard blows of geologist's pick. r pick only with difficulty. d to detach hand specimen. r pick. Gouges or grooves to be by hard blow of point of a mens can be detached by moderate 16 inch deep by firm pressure on cavated in small chips to pieces y hard blows of the point of a	STRUCTURE tight open healed filled	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may b degree of healing, (i.e., pa thickness and mineralogy, may be noted degree of filling, (i.e. partia thickness and type of filling	ining or coatings fracture surface be noted artial or complete), /hardness al or complete), ng may be noted					
VERY SOFT - Can be carved with a knife. Can be excavated readily with point of pick. Pieces 1-inch or more in thickness can be broken with finger pressure. Can be scratched readily by fingernail. noderately rough asperities are clearly visible and fracture surface feels abrasive Reference: Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. smooth no asperities, smooth to touch extreamly smooth and shiny File No. 6231.0 November 2021 November 2021	VERY HARD HARD MODERATELY HARD MEDIUM	 Cannot be scratched with kniff specimens requires several h Can be scratched with knife o Hard blow of hammer required Can be scratched with knife o ¼ inch deep can be excavate geologist's pick. Hand specir blow. Can be grooved or gouged 1// knife or pick point. Can be ex about 1-inch maximum size by geologist's pick. 	e or sharp pick. Breaking of hand and blows of geologist's pick. r pick only with difficulty. d to detach hand specimen. r pick. Gouges or grooves to d by hard blow of point of a mens can be detached by moderate 16 inch deep by firm pressure on cavated in small chips to pieces y hard blows of the point of a	STRUCTURE tight open healed filled	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may b degree of healing, (i.e., parti- thickness and mineralogy, may be noted degree of filling, (i.e. parti- thickness and type of filling ROUGHNESS	ining or coatings fracture surface be noted artial or complete), /hardness al or complete), ng may be noted					
Werk soft - Call be darved with a kine. Call be excavated readily with point of pick. Pieces 1-inch or more in thickness can be broken with finger pressure. Can be scratched readily by fingernail. moderately rough surface feels abrasive surface feels a	VERY HARD HARD MODERATELY HARD MEDIUM SOFT	 Cannot be scratched with kniff specimens requires several h Can be scratched with knife o Hard blow of hammer required Can be scratched with knife o ¼ inch deep can be excavate geologist's pick. Hand specir blow. Can be grooved or gouged 1/ knife or pick point. Can be ex about 1-inch maximum size by geologist's pick. Can be gouged or grooved rea be excavated in chips to piece blows of a pick point. Small th pressure. 	e or sharp pick. Breaking of hand hard blows of geologist's pick. r pick only with difficulty. d to detach hand specimen. r pick. Gouges or grooves to be d by hard blow of point of a mens can be detached by moderate 16 inch deep by firm pressure on cavated in small chips to pieces y hard blows of the point of a addily with knife or pick point. Can as several inches in size by moderate in pieces can be broken by finger	STRUCTURE tight open healed filled <u>SURFACE</u> stepped	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may b degree of healing, (i.e., pathickness and mineralogy, may be noted degree of filling, (i.e. pathickness and type of filling thickness and type of filling <u>ROUGHNESS</u> <u>DESCRIPTION</u> near normal steps and to fracture surface	ining or coatings fracture surface be noted artial or complete), /hardness al or complete), ig may be noted					
Reference: Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Subsurface Investigation for Design and Construction of Foundations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. Singhtly rough Small aspertites on the fracture surface visible and can be felt on a sperifies, smooth to touch extreamly smooth and shiny Image: Comparison of the fracture surface of the	VERY HARD HARD MODERATELY HARD MEDIUM SOFT	 Cannot be scratched with kniff specimens requires several h Can be scratched with knife o Hard blow of hammer required Can be scratched with knife o ¼ inch deep can be excavate geologist's pick. Hand specir blow. Can be grooved or gouged 1// knife or pick point. Can be ex about 1-inch maximum size by geologist's pick. Can be gouged or grooved rea be excavated in chips to piece blows of a pick point. Small th pressure. 	 e or sharp pick. Breaking of hand hard blows of geologist's pick. r pick only with difficulty. d to detach hand specimen. r pick. Gouges or grooves to do by hard blow of point of a mens can be detached by moderate 16 inch deep by firm pressure on cavated in small chips to pieces of hard blows of the point of a adily with knife or pick point. Can as several inches in size by moderate hin pieces can be broken by finger 	STRUCTURE tight open healed filled SURFACE stepped rough	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may be degree of healing, (i.e., pat thickness and mineralogy, may be noted degree of filling, (i.e. parti- thickness and type of filling ROUGHNESS <u>DESCRIPTION</u> near normal steps and r fracture surface large, angular asperities	ining or coatings fracture surface be noted artial or complete), /hardness al or complete), ag may be noted ridges occur on s can be seen					
Substrate investigation for Design and Construction of Pointdations of Buildings, ASCE-Manuals and Reports on Engineering Practice-No. 56, 1976, by American Society of Civil Engineers. smooth no asperities, smooth to touch polished extreamly smooth and shiny Image: Construction of Pointdation of 1976, by American Society of Civil Engineers. smooth no asperities, smooth to touch extreamly smooth and shiny Image: Construction of Pointdation of P	VERY HARD HARD MODERATELY HARD MEDIUM SOFT VERY SOFT	 Cannot be scratched with kniff specimens requires several h Can be scratched with knife o Hard blow of hammer required Can be scratched with knife o ¼ inch deep can be excavate geologist's pick. Hand specir blow. Can be grooved or gouged 1/ knife or pick point. Can be exabout 1-inch maximum size by geologist's pick. Can be gouged or grooved reperturbed or grooved reperturbed on the pick point. Small the pressure. Can be carved with a knife. Cof pick. Pieces 1-inch or more finger pressure. Can be scrated in chips to piece blows of a pick point. Small the pressure. 	 e or sharp pick. Breaking of hand and blows of geologist's pick. r pick only with difficulty. d to detach hand specimen. r pick. Gouges or grooves to of d by hard blow of point of a mens can be detached by moderate 16 inch deep by firm pressure on cavated in small chips to pieces y hard blows of the point of a adily with knife or pick point. Can as several inches in size by moderate hin pieces can be broken by finger Can be excavated readily with point of a broken with ched readily by fingermail. 	STRUCTURE tight open healed filled <u>SURFACE</u> stepped rough moderately rough	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may be degree of healing, (i.e., pat thickness and mineralogy, may be noted degree of filling, (i.e. parti- thickness and type of filling Mear normal steps and re fracture surface large, angular asperities asperities are clearly vis surface feels abrasive	ining or coatings fracture surface be noted artial or complete), /hardness al or complete), ig may be noted ridges occur on s can be seen sible and fracture					
1976, by American Society of Civil Engineers. polished extreamly smooth and shiny GHD File No. 6231.0 November 2021	VERY HARD HARD MODERATELY HARD MEDIUM SOFT VERY SOFT	 Cannot be scratched with kniff specimens requires several h Can be scratched with knife o Hard blow of hammer required Can be scratched with knife o ¼ inch deep can be excavate geologist's pick. Hand specir blow. Can be grooved or gouged 1// knife or pick point. Can be exavated in chips to piece blows of a pick point. Small th pressure. Can be carved with a knife. Cof pick. Pieces 1-inch or more finger pressure. Can be scrated in chips to piece blows of a pick point. Small the pressure. 	 e or sharp pick. Breaking of hand hard blows of geologist's pick. r pick only with difficulty. d to detach hand specimen. r pick. Gouges or grooves to be by hard blow of point of a mens can be detached by moderate 16 inch deep by firm pressure on cavated in small chips to pieces y hard blows of the point of a addily with knife or pick point. Can be several inches in size by moderate hin pieces can be broken by finger Can be excavated readily with point be broken with ched readily by fingernail. 	STRUCTURE tight open healed filled <u>SURFACE</u> stepped rough moderately rough slightly rough	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may be degree of healing, (i.e., pa thickness and mineralogy may be noted degree of filling, (i.e. parti- thickness and type of filling degree of filling, (i.e. parti- thickness and type of filling may be noted degree of filling, (i.e. parti- thickness and type of filling <u>ROUGHNESS</u> <u>DESCRIPTION</u> near normal steps and no fracture surface large, angular asperities asperities are clearly vis surface feels abrasive small asperities on the f	ining or coatings fracture surface be noted artial or complete), /hardness al or complete), ig may be noted ridges occur on is can be seen sible and fracture fracture surface					
GHD Figure JACOBS Transportation Agency for Monterey County A-2 File No. 6231.0 November 2021 Bedrock Descriptors	VERY HARD HARD MODERATELY HARD MEDIUM SOFT VERY SOFT VERY SOFT	 Cannot be scratched with kniff specimens requires several h Can be scratched with knife o Hard blow of hammer required Can be scratched with knife o ¼ inch deep can be excavate geologist's pick. Hand specir blow. Can be grooved or gouged 1/ knife or pick point. Can be exabout 1-inch maximum size by geologist's pick. Can be gouged or grooved reperturbed or grooved reperturbed on the pick point. Small the pressure. Can be carved with a knife. Cof pick. Pieces 1-inch or more finger pressure. Can be scratal surface Investigation for Design a tings, ASCE-Manuals and Report 	 e or sharp pick. Breaking of hand and blows of geologist's pick. r pick only with difficulty. d to detach hand specimen. r pick. Gouges or grooves to of by hard blow of point of a mens can be detached by moderate 16 inch deep by firm pressure on cavated in small chips to pieces y hard blows of the point of a adily with knife or pick point. Can as several inches in size by moderate hin pieces can be broken by finger Can be excavated readily with point a in thickness can be broken with ched readily by fingermail. nd Construction of Foundations of s on Engineering Practice-No. 56, 	STRUCTURE tight open healed filled <u>SURFACE</u> stepped rough moderately rough slightly rough	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may be degree of healing, (i.e., pat thickness and mineralogy, may be noted degree of filling, (i.e. parti- thickness and type of filling degree of filling, (i.e. parti- thickness and type of filling DESCRIPTION near normal steps and no fracture surface large, angular asperities asperities are clearly vis surface feels abrasive small asperities on the f visible and can be felt no asperities, smooth to	ining or coatings fracture surface pe noted artial or complete), /hardness al or complete), ag may be noted ridges occur on s can be seen sible and fracture fracture surface o touch					
File No. 6231.0 November 2021	VERY HARD HARD MODERATELY HARD MEDIUM SOFT VERY SOFT VERY SOFT Reference: Sub- Build 1976	 Cannot be scratched with kniff specimens requires several h Can be scratched with knife o Hard blow of hammer required Can be scratched with knife o ¼ inch deep can be excavate geologist's pick. Hand specir blow. Can be grooved or gouged 1/ knife or pick point. Can be exaated in chips to piece about 1-inch maximum size by geologist's pick. Can be gouged or grooved reader about 1-inch maximum size by geologist's pick. Can be gouged or grooved reader about 1-inch maximum size by geologist's pick. Can be gouged or grooved reader about 1-inch maximum size by geologist's pick. Can be gouged or grooved reader about 1-inch maximum size by geologist's pick. Can be carved with a knife. Co of pick. Pieces 1-inch or more finger pressure. Can be scratter at the surface Investigation for Design a dings, ASCE-Manuals and Report 5, by American Society of Civil Endertal surface Investigation for Design a surface Investigation for Design a dings. 	 e or sharp pick. Breaking of hand hard blows of geologist's pick. r pick only with difficulty. d to detach hand specimen. r pick. Gouges or grooves to be by hard blow of point of a mens can be detached by moderate 16 inch deep by firm pressure on cavated in small chips to pieces or hard blows of the point of a mens can be be by firm pressure on cavated in small chips to pieces or hard blows of the point of a addily with knife or pick point. Can be several inches in size by moderate him pieces can be broken by finger Can be excavated readily with point be in thickness can be broken with ched readily by fingernail. nd Construction of Foundations of s on Engineering Practice-No. 56, gineers. 	STRUCTURE tight open healed filled SURFACE stepped rough moderately rough slightly rough smooth polished	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may be degree of healing, (i.e., pat thickness and mineralogy, may be noted degree of filling, (i.e. parti- thickness and type of filling may be noted degree of filling, (i.e. parti- thickness and type of filling ROUGHNESS DESCRIPTION near normal steps and r fracture surface large, angular asperities asperities are clearly vis surface feels abrasive small asperities on the f visible and can be felt no asperities, smooth to extreamly smooth and s	ining or coatings fracture surface be noted artial or complete), /hardness al or complete), ag may be noted ridges occur on s can be seen sible and fracture fracture surface o touch					
File No. 6231.0 November 2021 Bedrock Descriptors	VERY HARD HARD MODERATELY HARD MEDIUM SOFT VERY SOFT VERY SOFT Reference: Suba Build 1976	 Cannot be scratched with kniff specimens requires several h Can be scratched with knife o Hard blow of hammer required Can be scratched with knife o ¼ inch deep can be excavate geologist's pick. Hand specir blow. Can be grooved or gouged 1/ knife or pick point. Can be exabout 1-inch maximum size by geologist's pick. Can be gouged or grooved reable excavated in chips to piece blows of a pick point. Small the pressure. Can be carved with a knife. Cof pick. Pieces 1-inch or more finger pressure. Can be scratted in the scratter surface Investigation for Design a dings, ASCE-Manuals and Report 5, by American Society of Civil Enternal surface Investigation for Design a finger pressure. 	 e or sharp pick. Breaking of hand and blows of geologist's pick. r pick only with difficulty. d to detach hand specimen. r pick. Gouges or grooves to of d by hard blow of point of a mens can be detached by moderate 16 inch deep by firm pressure on cavated in small chips to pieces y hard blows of the point of a adily with knife or pick point. Can as several inches in size by moderate in pieces can be broken by finger Can be excavated readily with point a in thickness can be broken with ched readily by fingermail. nd Construction of Foundations of s on Engineering Practice-No. 56, gineers. 	STRUCTURE tight open healed filled <u>SURFACE</u> stepped rough moderately rough slightly rough slightly rough	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may be degree of healing, (i.e., pat thickness and mineralogy, may be noted degree of filling, (i.e. parti- thickness and type of filling degree of filling, (i.e. parti- thickness and type of filling DESCRIPTION near normal steps and r fracture surface large, angular asperities asperities are clearly vis surface feels abrasive small asperities on the f visible and can be felt no asperities, smooth to extreamly smooth and s	ining or coatings fracture surface be noted artial or complete), /hardness al or complete), ag may be noted ridges occur on s can be seen sible and fracture fracture surface b touch shiny Figure					
	VERY HARD HARD MODERATELY HARD MEDIUM SOFT VERY SOFT <u>Reference:</u> Suba Build 1976	 Cannot be scratched with kniff specimens requires several h Can be scratched with knife o Hard blow of hammer required Can be scratched with knife o ¼ inch deep can be excavate geologist's pick. Hand specir blow. Can be grooved or gouged 1// knife or pick point. Can be exabout 1-inch maximum size by geologist's pick. Can be gouged or grooved reabe excavated in chips to piece blows of a pick point. Small the pressure. Can be carved with a knife. Cof pick. Pieces 1-inch or more finger pressure. Can be scratts surface Investigation for Design a dings, ASCE-Manuals and Report 5, by American Society of Civil En 	 e or sharp pick. Breaking of hand and blows of geologist's pick. r pick only with difficulty. d to detach hand specimen. r pick. Gouges or grooves to of d by hard blow of point of a mens can be detached by moderate 16 inch deep by firm pressure on cavated in small chips to pieces y hard blows of the point of a adily with knife or pick point. Can as several inches in size by moderate hin pieces can be broken by finger Can be excavated readily with point a broken with ched readily by fingernail. Ind Construction of Foundations of s on Engineering Practice-No. 56, gineers. 	STRUCTURE tight open healed filled <u>SURFACE</u> stepped rough moderately rough slightly rough slightly rough smooth polished GHD ency for Monterey for Del Rey/SR218 S rey, California	APERTURE DESCRIPTION no visible separation amount of separation, sta on fracture surfaces, and moisture conditions may be degree of healing, (i.e., pat thickness and mineralogy, may be noted degree of filling, (i.e. parti- thickness and type of filling ROUGHNESS DESCRIPTION near normal steps and re fracture surface large, angular asperities asperities are clearly vis surface feels abrasive small asperities on the f visible and can be felt no asperities, smooth to extreamly smooth and se	ining or coatings fracture surface be noted artial or complete), /hardness al or complete), ag may be noted ridges occur on s can be seen sible and fracture fracture surface to touch shiny Figure A-2					

Appendix B

					LOG OF BORING E	$+1^{\oplus}$				×		GRAIN SIZE			DIF SH	RECT IEAR
ОЕРТН	SAMPLE NO.	IYPE	PENETRATION	GROUNDWATER	LOCATION: see Figure		MOISTURE	DRY DENSITY	-IQUID LIMIT	PLASTICITY INDE	Gravel >#4 sieve)	Sand #4 to #200 sieve)	-ines <#200 sieve)	JNCONFINED COMPRESSIVE STRENGTH	Cohesion	nternal Friction Angle
feet	•,		blows/ft.	Ğ			%	lbs./ft.3	_		%	%	~ ~	kips/ft.2	p.s.f.	
-	1 2	7	18 6		- black - few roots and gravel - trace clay - nonplastic	L - loose and medium dense - dry	21	89								
5- - - -	з 4		24		POORLY GRADED SAN - dark gray - trace gravel, silt, and - nonplastic	ID (SP) - very loose and medium dense I clay - wet	23	98			1	96			FINES % Silt % Clay 520	35°
10-					BOTTO	M OF BORING AT 10 FEET										
- - - - - - - - - - - - - - - - - - -																
NOTES	1: 2: 3:	Drilleo See re Grour	d 08/2 eport te idwate	5/20 ext an r seep	21 using a Mobile B-24, 5" sc d figures in Appendices A and bage was encountered during	lid stem augers, and a 30" drop by 140 lb. cathead I C for additional definitions, boring information, lab drilling at a depth of 6.5' and a groundwater level w	sampli test re vas mea	ng ham sults, a asured	nmer. 9 Ind gro at 5' p	See no bund c prior to	otes ir lescrip borir	n Figure otions. Ig back	e A-1, √filling	Append g on 08/:	ix A. 25/20)21.
					cMILLEN	GHE)							Fi	gure	;
	JACOBS ASSOCIATES Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Del Rey Oaks, California						B	8-1								
File No. 6231.0 November 2021 Log of Boring B-1							•									

					LOG OF BORING B	⊦2 ^①				×		GRAIN SIZE			DIR SHI	ect Ear
	NO.		ATION NCE	DWATER	LOCATION: see Figure	1	RE	YTISN	_IMIT	ITY INDE	(i))0 sieve)	eve)	FINED ESSIVE	ų	Angle
DEPTH	SAMPLE	TYPE	PENETR RESIST/	GROUN		DESCRIPTION ²	R MOISTU	DRY DE	riquid I	PLASTIC	c Cravel (>#4 sieve	Sand (#4 to #20	Eines (<#200 si	COMPRISTRENG	Cohesio	Internal Friction
	1		37	3	POORLY GRADED SAN - very pale brown to lig and light yellowish br - trace gravel - nonplastic	ID WITH SILT AND CLAY (SP-SM/SP-SC) ght brown - medium dense to dense rown - dry to moist	2	93			70	%	70	kips/n.²		
5- - -	2		49			<1										
- 10- -	3		72		- mica sand grains visi	- mica sand grains visible in samples 4 and 5 8 90										
- - 15-	5 6		40		BEDROCK - MONTERE	BEDROCK - MONTEREY FORMATION (?)										
-	7 8		50/6" 50/3"		- porcelaneous shale											
- 20- - - -					BORIN	G REFUSAL AT 17.5 FEET										
25- - -																
NOTES	123	Drille See r Grour	d 08/2 eport te ndwate	5/20 ext an r seep	21 using a portable minutem d figures in Appendices A and page was not encountered du	an, 3" solid stem augers, and a 30" drop by 140 lb. l C for additional definitions, boring information, lab ring drilling nor prior to boring backfilling on 08/25/	cathea test re 2021.	d samp sults, a	ling ha	amme ound c	r. See lescrip	notes tions.	in Fig	jure A-1,	Apper	ndix A
				M		GHE Transportation Agency fo) r Mor	iterey	Cou	nty				Fi	gure	
				AS	SSOCIATES	FORTAG - Canyon Del Re Del Rey Oaks, (ey/SF Califo ng	218 S rnia R_?	segr	ient				E)-2	-
File No. 6231.0 November 2021 Log of Boring B-2											•					

				LOG OF BORING B-3 ^①							×		GRAIN SIZE			DIF SH	ECT EAR	
	E NO.		ATION ANCE	DWATER	LOCATION: see Figure	1		IRE	NSITY	LIMIT	SITY INDE	(6	00 sieve)	eve)	FINED ESSIVE STH	u	Angle	
DEPTH	SAMPLE	ТҮРЕ	PENETF RESIST/	GROUN		DESCRIPT	10N ⁽²⁾	MOISTL	DRY DE	LIQUID	PLASTIC	Gravel (>#4 sieve	Sand (#4 to #20	Fines (<#200 si	COMPR	Cohesic	Internal Friction	
feet -	1	X	blows/ft.	3	SILTY SAND (SM) - FIL - dark brown - few gravel and clay	L	- nonplastic - dry	%	lbs./ft.3			%	%	%	kips/ft.2	p.s.f.		
-	2		10		SILTY SAND (SM) - light gray and light br - few clay - nonplastic	rown	- medium dense - dry to moist	14	99									
5-	3	X			FAT CLAY WITH SAND - dark gray to black - few silt and organics	(CH)	- soft to medium stiff - moist			61	33							
-	4		4		- nigniy plastic			40	79						1.1			
- 10-	5		5															
- - 15- - -																		
20- - - -																		
25-																		
NOTES	1 I 2 S 3 O	Drilleo See re Grour	d 08/2 eport te idwate	25/20 ext ar r seep	21 using a Mobile B-24, 5" sc d figures in Appendices A and bage was not encountered du	lid stem aug I C for additic ring drilling n	ers, and a 30" drop by 140 lb. cathead onal definitions, boring information, lab or prior to boring backfilling on 08/25/	sampli test re '2021.	ng han sults, a	nmer. S Ind gro	See no bund c	otes in lescrip	Figure	e A-1,	Append	ix A.		
						GHE Transportation Agonau fo) r Mon	iterov	Cour	ntv				Fi	gure	;		
JACOBS Associates					ACUBS SSOCIATES		FORTAG - Canyon Del Rey/SR218 Segment Del Rey Oaks, California								B-3			
File No. 6231.0 November 2021							Log of Boring B-3											

					LOG OF BORING E	-4 (continued) ⁽¹⁾				X		GRAIN SIZE			Dir She	ect Ear
ЕРТН	AMPLE NO.	/PE	ENETRATION ESISTANCE	ROUNDWATER			OISTURE	RY DENSITY	quid limit	ASTICITY INDI	ravel #4 sieve)	and 4 to #200 sieve)	nes #200 sieve)	NCONFINED OMIPRESSIVE FRENGTH	ohesion	ternal iction Angle
☐ feet	S	F	blows/ft.	G		DESCRIPTION	≥ %	D lbs./ft.3		đ	ن %	თ്. *	⊑⊻ %	⊐ວ່⊘ kips/ft.²	Ŏ p.s.f.	드ᇿ
- - - 30-	10 11		52 12		LOG CONTINUED F POORLY GRADED SAN - dark gray - trace clay and gravel - nonplastic	ROM 27 FEET ON FIGURE B-4 (1 of 2) ID WITH SILT (SP-SM) - medium dense to dense - wet	22	100			4	88	8	► 5 3'	FINES % Silt % Clay	
-	12		20													
35- - -					ELASTIC SILT (MH) - white - diatomaceous and/o (bentonitic volcanic a	- highly plastic tuffaceous - medium stiff h ?) wet					-		_			
- - 40-	13		4		ELASTIC SILT (MH) an - black - highly plastic	d PEAT (PT) - medium stiff - wet			112	42						
- - 45- - 50- - - -			notes	on Fi	BOTTO	M OF BORING AT 40 FEET										
NOTES	1	See	notes	on Fi	gure B-4 (1 of 2).											
GHD Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Del Rey Oaks, California									Fi E (2	gure 3-4	-					
	ne r	NO. 6	0231.	U	November 2021											

					LOG OF BORING B				×		GRAIN SIZE			DIR SHI	RECT EAR	
	NO		ATION NCE	WATER	LOCATION: see Figure	1		SITY	IMIT	TY INDE) sieve)	ve)	INED SSIVE TH		Angle
ЕРТН	AMPLE	ΥPE	ENETR4	ROUND			AOISTUF	DEN	n ainòi	LASTICI	åravel >#4 sieve)	and #4 to #200	ines <#200 sie	INCONF COMPRE TRENG	ohesior	nternal riction A
feet	0)	-	blows/ft.	3		DESCRIPTION®	∼ %	lbs./ft.3		ш.	%	% %	ш.: %	kips/ft.2	p.s.f.	_ u.
-					 - light brown - trace clay and gravel - nonplastic 											
-					BORING B-5a REFUS AND METAL, MOVI DI											
5-																
-																
10- -																
-																
- 15-																
-																
-																
20-																
-																
- 25-																
-																
TES	1	Drille Figu	ed 08/: re A-1,	26/20 Appe	L D21 using a SIMCO 2400 SK- ndix A.	1 Longstroke, 7" hollow stem augers, and a 30" drop	by 14	l O Ib. ca	athead	samp	oling h	l amme	er. See	e notes i	n	I
RC	2 3	See Grou	report [*] Indwate	text a er see	nd figures in Appendices A ar epage was not encountered d	d C for additional definitions, boring information, lat uring drilling nor prior to boring backfilling on 08/26	o test r /2021	esults, : 	and gr	ound	descri	ptions				
				M	cMILLEN	GHD								Fi	gure	;
JACOBS Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Del Rey Oaks, California								B-5a								
File No. 6231.0 November 2021						Log of Boring B-5a										

					LOG OF BORING E	₽-5b ^①					X		GRAIN SIZE			DIR SHI	ect Ear		
	NO.		ATION NCE	WATER	LOCATION: see Figure	1		Ë	\SITY	IMIT	ITY INDE		0 sieve)	ve)	INED SSIVE		Angle		
EPTH	AMPLE	YPE	ENETR/ RESISTA	ROUND			(2)	AOISTUF	DEN	n dinğı	LASTICI	àravel *#4 sieve)	and #4 to #200	ines <#200 sie	INCONF COMPRE	cohesion	nternal riction /		
feet	0		blows/ft.	3		DESCRIP	FION [®]	≥ %	lbs./ft.3		ш.	%	% %	ш <u></u> %	kips/ft.2	p.s.f.	<u> </u>		
-					SILTY SAND (SM) - FIL - light brown - nonplastic	L	- medium dense - dry									FINES	7		
-	1		17		POORLY GRADED SAM	ID WITH SI	LT AND CLAY	2	101							% Clay	┢		
- 5- -	2		4		(SP-SM/SP-SC) - FILL - yellowish brown and to light brown with so reddish brown - trace gravel	brown ome	- nonplastic - loose - dry to moist					3	88	9					
- - 10-	3 4a		4		- light brown with som	e reddish b on apparer	rown ht concrete at 10.5'	4	95										
-					- drilled through conci	ete betwee	n 10.5' and 12'	1							L .				
- - 15-	4b		3		SILTY CLAYEY SAND (- very dark gray - tuffaceous layers (?) - trace gravel - medium to highly pla	SM/SC)	- very loose to loose - moist to wet												
- - - 20-	56		4			S		78	52			<1	75	25	-► 1 9	FINES 6% Silt % Clay 620	26°		
- - 25- -	7		6		SILTY CLAYEY SAND (- dark brown - trace gravel - medium plastic fines	SM/SC)	- loose - moist to wet					4	52	44	22	FINES 3% Silt 1% Clay			
-					LOG CONTINUED	AT 27 FEE	T ON FIGURE B-5b (2 of 2)												
NOTES	1 2 3	Drille Figu See Grou bacl	ed 08/ res A-1 report indwat filling	26/20 L and L text a er see on 08	021 using a SIMCO 2400 SK- A-2, Appendix A. nd figures in Appendices A ar apage was encountered in sar 2/26/2021.	1 Longstroke nd C for addit nples or dur	e, 7" hollow stem augers, and a 30" dro tional definitions, boring information, la ing drilling at a depth of 18' and 29', an	p by 14 b test r d groui	10 lb. ca esults, ndwate	atheac and gi r level	l samp round was r	oling h descr neasu	iptions red at	er. See 5. 26' pi	e notes rior to b	n oring			
GHD										Fi	gure								
F	ile	No.	6231	J AS	ACOBS SOCIATES	Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Del Rey Oaks, California Log of Boring B-5b									B-5b (1 of 2)				

					LOG OF BORING B-5b (continued)											DIRECT SHEAR		
ЕРТН	AMPLE NO.	YPE	ENETRATION (ESISTANCE	ROUNDWATER				AOISTURE	RY DENSITY	iquid limit	LASTICITY INDE	iravel *#4 sieve)	and #4 to #200 sieve)	ines <#200 sieve)	INCONFINED OMPRESSIVE TRENGTH	ohesion	nternal riction Angle	
feet	5		blows/ft.	0		DESCRIPTION		⊿ %	ے lbs./ft. ³		<u>а</u>	%	% %	ш <u>°</u>	ے O kips/ft. ²	p.s.f.	<u>-</u> ш	
- - 30- -	9		5	∑l-	LOG CONTINUED FI SILTY CLAYEY SAND (- dark brown - trace gravel - medium plastic fines	illTY CLAYEY SAND (SM/SC) - dark brown - loose - trace gravel - wet - medium plastic fines												
- - 35- - -	10 11		34 26		ELASTIC SILT WITH SA CLAYSTONE/SILTSTON - gray - few clay - medium plastic and plastic - cemented soil, to ver	AND (MH) and NE - MONTEREY FORMATION (?) - very stiff soil, and soft rock hardness highly - wet ry severely weathered bedrock		15	104						0.4			
-	12	/	27			87 25												
		S20	notes	on Fi	BOTTO	M OF BORING AT 40 FEET												
NOTES	1	See	notes	on Fi	gure B-5b (1 of 2).													
GHD Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Del Rey California								Fig B-	^{gure}	b								
F	ïle N	No. 6	6231.	0	November 2021	Log of E	Bori	ing	B-5	5b					(2	of 2))	
					LOG OF BORING B	-6 ^①				×		GRAIN SIZE	1		DIF SH	RECT EAR		
---------------	---	----------------------------	-----------------------------	---------------------------	--	---	--------------------------------------	-------------------------	--------------	----------------	------------------------	--------------------	----------------------	------------------------	----------------------------	----------------------		
	NO.		ATION ANCE	DWATER	LOCATION: see Figure	1	RE	VSITY	LIMIT	ITY INDE	(0)	00 sieve)	eve)	FINED ESSIVE STH	ц	Angle		
EDEPTH	SAMPLE	TYPE	PENETF RESIST/	GROUN		DESCRIPTION ²	¢ MOISTU		riðnid I	PLASTIC	e Gravel (>#4 sieve	Sand (#4 to #20	€ Fines (<#200 si	COMPR STRENG	Cohesic	Internal Friction		
-	1		7	9	SILTY SAND (SM) - olive yellow - nonplastic	- loose to medium dense - dry	3	91			70	70	70	NIPS/TC	μ.э.ι.			
5-	2		14		POORLY GRADED SAN - olive yellow - nonplastic	D WITH SILT AND CLAY (SP-SM/SP-SC) - medium dense - dry			_			91	9					
- - 10-	3				SILTY SAND (SM) - light gray and pale ye light gray - nonplastic	ellow to - dense to very dense - dry							- [-	► 6 3	FINES 5% Silt % Clay	,		
-	4 5		47 51				5	98										
- 15- -	6	X					•											
-	7 8		75 43				8	95										
					BOTTO	M OF BORING AT 20 FEET												
- 25- -																		
NOTES	1	Drilleo See re Groun	l 08/2 eport te dwate	5/20: ext an r seep	21 using a portable minutema d figures in Appendices A and page was not encountered du	an, 3" solid stem augers, and a 30" drop by 140 lb. C for additional definitions, boring information, lab ring drilling nor prior to boring backfilling on 08/25/	cathea test re 2021.	d samp sults, a	ling ha	amme bund d	r. See lescrip	notes	in Fig	jure A-1,	Apper	ndix A		
				M J AS	CMILLEN ACOBS SSOCIATES	GHD Transportation Agency fo FORTAG - Canyon Del Re Del Rey Oaks, () r Mor ey/SF Califo	iterey 218 S rnia	Cou Segri	nty nent				Fi	gure 8-6	; ;		
F	File No. 6231.0 November 2021 Log of Boring B-6												•					

Appendix C

Consolidated Undrained Direct Shear (ASTM D3080M)

		L		()				
CTL Job #:		1022-034		Project #:	62	31	Bv:	MD
Client:	McMille	n Jacobs Ass	ociates	Date:	9/9/2	2021	Checked:	PJ
Project Name:				Remolding Info:				
	Sp	ecimen Data			Phi (deg)		Ult. Phi (deg)	
	1	2	3	4	Cobasion (nsf)		Lift Cohesion (nsf)	
Boring:	B-1-3b	B-1-3b	B-1-3b		Conesion (psi)		on. Conesion (psi)	
Sample:								
Depth (ft):						Shea	ar Stress vs. Defo	rmation
Visual	Gray Silty	Gray Silty	Gray Silty				[Sample 1
Description:	SAND	SAND	SAND		6000			Sample 2
								Sample 3
					5000			
Normal Load (paf)	1000	2000	4000			AIN		
Dry Mass of Specimen (g)	117.3	119.5	118 7			Æ ₹I		
Initial Height (in)	1.00	1.01	1.00		4000			
Initial Diameter (in)	2.42	2.42	2.42		(bst			
Initial Void Ratio	0.735	0.716	0.713		Gess			
Initial Moisture (%)	23.8	23.4	23.4		15 3000			
Initial Wet Density (pcf)	120.3	121.2	121.4		ihea i			
Initial Dry Density (pcf)	97.1	98.2	98.4		2000			the state of the s
Initial Saturation (%)	87.6	88.2	88.4					
∆Height Consol (in)	0.0125	0.0149	0.0183		T.	\$		
At Test Void Ratio	0.713	0.691	0.682		1000 🐈			
At Test Moisture (%)	24.3	23.6	23.2		1			
At Test Wet Density (pcf)	122.3	123.2	123.5					
At Test Dry Density (pcf)	98.4	99.7	100.2		0.0	5.0	10.0 15	.0 20.0
At Test Saturation (%)	92.0	92.1	91.9			Relative Lat	eral Displacement (%	6)
Strain Rate (%/min)	1.1	1.0	1.1					-
Strengths Picked at	Peak	Peak	Peak					
Shear Stress (psf)	2530	2680	4975			Shoar Strop	se ve Normal I oa	d
ΔHeight (in) at Peak						onear ones		Peak
Onimate Stress (psi)					8000		·	
	c	Change in Height	t		1			Ult. Stress
0 0000			Г	Sample 1	1			
0.0000				Sample 2	6000]			
0.2000				Sample 3	st i			
t (in)				Sample 4	d 'ss		•	
e 0.4000					4000			
					ar S			
la 0.6000					She			
					2000	•		
					2000			
2 1.0000 -					1			
1.2000 -	2.0 4.0	6.0 8.0 1	0.0 12.0 14.0	0 16.0 18.0	0	2000	4000 6000	8000
	Re	lative Lateral Displ	acement (%)			Norn	nal Load, psf	
Remarks:	*DS-CU* A fully	undrained condition	on may not be atta	ained in this test.	∆H is not measur	ed during undrain	ed direct shear tests	s. Engineering
	judgement is requ	uired to determine	phi and cohesion,	no phi or cohesion	is reported. To a	dd phi and cohes	sion to the report go	to the "phi" tab
©	Values" tab using		s or a mile through	the o data points.		ted can be changed	on the Elig	

Consolidated Undrained Direct Shear (ASTM D3080M)

				(/ 10 / 11 / 2				
CTL .lob #'		1022-034		Project #	62	231	Bv:	MD
Client:	McMille	en Jacbos Ass	ociates	Date:	9/9/	2021	Checked:	 PJ
Project Name:			oolatoo	Remolding Info:	01011			
	Sp	ecimen Data			Phi (deg)		Ult. Phi (deg)	
	1	2	3	4	(U /			
Boring:	B-4-6a	B-4-6a	B-4-6a		Cohesion (psf)		Ult. Cohesion (psf)	
Sample:								
Depth (ft):						She	ear Stress vs. Defo	rmation
Visual	Gray Sandy	Gray Sandy	Gray Sandy]	Sample 1
Description:	CLAY	CLAY	CLAY		2500			
								Sample 3
							l	Sample 4
	4000		4000		2000			
Normal Load (psf)	1000	2000	4000			ميسمير (
Dry Mass of Specimen (g)	85.9	88.5	94.6					
Initial Diamator (in)	1.01	1.01	1.00		1500			
Initial Void Ratio	1 383	1 326	2.42		ssa	£		
Initial Moisture (%)	46.3	44.6	36.9		Str			
Initial Wet Density (ncf)	103.5	104.8	107.4		Jear			
Initial Dry Density (pcf)	70.7	72.5	78.4		5 1000			
Initial Saturation (%)	90.4	90.8	86.7					
ΔHeight Consol (in)	0.0198	0.0411	0.0786					Press Concept
At Test Void Ratio	1.336	1.231	0.980		500			
At Test Moisture (%)	46.7	44 1	34.8					
At Test Wet Density (pcf)	105.9	108.9	114.7		F F			
At Test Dry Density (pcf)	72.2	75.5	85.1		0	50	10.0 15	
At Test Saturation (%)	94.4	96.8	95.8		0.0	Relative La	ateral Displacement (%	6 20.0 6)
Strain Rate (%/min)	1.2	1.0	1.1				(<i>i</i>	.,
Strengths Picked at	Peak	Peak	Peak					
Shear Stress (psf)	1008	974	1979			Cheer Ctru		-1
∆Height (in) at Peak						Shear Stre	ess vs. Normai Loa	a
Ultimate Stress (psf)					8000 -		•	Peak — Shear Stress
	c	Change in Height	F		1			Ult. Stress
		shange in toigh			4			
0.0000				Sample 1	6000			
0 2000				Sample 3	· ·			
E)				Sample 4	s, ps			
<u>لَّ</u> 0.4000								
Icem					ar St			
<u>ସ</u> ୍ଥି 0.6000					She			
Ĕ ^{0.8000}					2000		• I	
ž 1 0000					1			
					1			
1.2000					0	2000	4000 6000	8000
0.0	5.0 Re	10.0 Iative Lateral Displ	15.0 I acement (%)	20.0	0	Noi	mal Load, psf	0000
Remarks	*DS-CU* A fully	undrained condition	on may not be att	ained in this test.	∆H is not measur	ed during undra	ined direct shear test	. Engineering
Kentano.	judgement is req	uired to determine	phi and cohesion,	no phi or cohesion	is reported. To a	add phi and coh	esion to the report go	to the "phi" tab
©	and in cells G30,	G31, H30, and H3	31 enter end point	s for a line through	the 3 data points	. The points plo	otted can be changed	on the "Eng
	- annes i an risinn							

Consolidated Undrained Direct Shear (ASTM D3080M)

CTL Job #		1022-034		Project #:		62	231			Bv:	MD	
Client:	McMille	n Jacobs Ass	ociates	Date:		9/10	/2021		- Che	cked:	P.I	
Project Name:		11000007.80	oolatoo	Remolding Info:		0,10,	2021		- 0110	-		
	Sp	ecimen Data		g	Phi (c	lea)			Ult. Phi	(deg)		
	1	2	3	4	(<u>J</u> /			1	(0/		
Boring:	B-5-5b	B-5-5b	B-5-5b		Cohesio	n (psf)			Ult. Cohesi	on (psf)		
Sample:												
Depth (ft):								Shea	r Stress v	s. Defor	mation	
Visual	Olive Gray	Olive Gray	Olive Gray							Г	Samp	le 1
Description:	Sandy SILT	Sandy SILT	Sandy SILT		450)					Samp	le 2
							, party				— ≜ — Samp	le 3
					400)					Samp	le 4
					250							
Normal Load (psf)	1000	2000	4000		350		I	A				
Dry Mass of Specimen (g)	61.1	62.7	65.2		300			Ā		-		
Initial Height (in)	1.00	1.00	1.02		(Jsd		I†					
Initial Diameter (in)	2.42	2.42	2.42) SS 2500							
Initial Void Ratio	2.338	2.251	2.185		Stre					No. of Lot of Lo		
Initial Moisture (%)	79.3	18.2	75.0		2000 ga							-
Initial Wet Density (pcf)	90.6 50.5	92.4 51.0	92.9		sh		7					
Initial Dry Density (pcf)	01.0	02.0	52.9		1500							-
Initial Saturation (%)	91.0	93.0	93.4									
ΔHeight Consol (in)	0.0069	0.0097	0.0233		100)						
At Test Void Ratio	2.315	2.219	2.112		50							
At Test Moisture (%)	81.7	79.3	77.3		500)						
At Test Wet Density (pcf)	92.4	93.9	96.0			, <u>F.</u>						
At Test Dry Density (pcf)	50.9	52.4	54.2			0.0	5	.0	10.0	15.	0 2	20.0
At Test Saturation (%)	95.3	96.5	98.8				Rela	ative Late	≭alDisplace	ement(%	,)	
Strain Rate (%/min)	1.0	1.0	1.1									
Strengths Picked at		Peak	Peak									
Snear Stress (pst)	2414	4200	4176				She	ar Stres	s v s. Norn	nal Load	ł	
Areight (in) at Peak	ι						-		Г	•	Peak	
Onimate Stress (psi)					8	000					— ShearStress	
	c	Change in Height	t			1				•	Ultimate	
0.0000		· · · · ·	Г	Sample 1								
0.0000				Sample 2	6	000]						
0.2000				Sample 3	st	1						
t (in)				Sample 4	s, p	1						
<u>و</u> 0.4000					tres	000		•	_ •			
acei					arc	1						
la 0.6000					She	1						
					-	••••]	•					
u.0000					2							
Z 1.0000						1						
1.2000		10.0	15.0			0	2	000	4000	6000	8000	
0.0	5.0 Re	10.0 ative Lateral Disp	15.0	20.0		-	-	Norm	al Load. ps	f		
Remarks	*DS-CU* A fullv	undrained condition	on may not be att	ained in this test	∆H is not	measur	ed during	undraine	d direct sh	ear tests	. Enaineeri	na
Remarks.	judgement is requ	uired to determine	phi and cohesion,	no phi or cohesion	is reporte	d. To a	add phi ar	nd cohesi	ion to the re	eport go t	o the "phi" t	ab
©	and in cells G30,	G31, H30, and H3	1 enter end points	s for a line through	the 3 dat	a points	. The po	ints plotte	ed can be c	hanged o	on the "Eng	
-	values" tab using	Cells LG A2 C2	and E2									

			F									
		PER D R A T O R Y		Corre	osivity	Test S	ummai	у				
CTL #	1022-034		Date:	9/16/2021	-	Tested By:	PJ		Checked:	PJ	_	
Client: Remarks:	McMillen Jacobs	Associates	Project:						Proj. No:	6231	-	
Sar	nple Location	or ID	Resistiv	ity @ 15.5 °C (0	Ohm-cm)	Chloride	Sul	fate	рН	ORP	Moisture	
Boring	Sample, No.	Depth, ft.	As Rec.	Minimum	Saturated	mg/kg	mg/kg	%	-	(Redox)	At Test	Soil Visual Description
						Dry Wt.	Dry Wt.	Dry Wt.		mv	%	
	[ASTM G57	Cal 643	ASTM G57	Cal 422-mod.	Cal 417-mod.	Cal 417-mod.	Cal 643	SM 2580B	ASTM D2216	
B-4-5	-	-	-	1908	-	29	417	0.0417	7.1	-	2.8	Black Silty SAND
					K							

Attachment D

Underground Hazards

Map of Nearby USTs, Hazardous Waste Sites, and Cleanup Sites

National Flood Hazard Layer FIRMette

Legend

121°50'29"W 36°35'52"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT CITY OF SEASIDE Without Base Flood Elevation (BFE) Zone A. V. A9 060203 With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS **Regulatory Floodway** 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D 0.2 PCT ANNUAL CHANCE FLOOD HAZARD NO SCREEN Area of Minimal Flood Hazard Zone X 06053C0327G Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D eff. 4/2/2009 - — – – Channel, Culvert, or Storm Sewer GENERAL STRUCTURES LIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** CITY OF DEL REY OAKS Mase Flood Elevation Line (BFE) 060197 Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** OTHER **Profile Baseline** OODWAY FEATURES Hydrographic Feature **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent TR SO an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap 06053C0329G accuracy standards AREA OF MINIMAL FLOOD HAZARD eff. 4/2/2009 The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 4/14/2022 at 11:40 AM and does not reflect changes or amendments subsequent to this date and MONTEREY COUNTY UNINCORPORATED AREAS time. The NFHL and effective information may change or 060195 become superseded by new data over time. T R S0 This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, P legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 121°49'52"W 36°35'23"N Feet 1:6.000 unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1.500 2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Map of Nearby Domestic Water Wells

No water wells are located within 200' of the proposed stormwater control measures.

Source: https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer Accessed: 6/28/2022

GAMA Well: MSMB-01

Well ID: MSMB-01 Latitude: 36.59775 Longitude: -121.834556 Well Category: MUNICIPAL Dataset Name: GAMA_USGS County: MONTEREY DWR Basin: SALINAS VALLEY - SEASIDE (3-004.08) Regional Board: CENTRAL COAST Senate District: 17 HVA: GAMA Study Area: MONTEREY/SALINAS Assembly District: 29 Underlying GSA: Hydrologic Region: Central Coast

GAMA Well Data

View GAMA Opendata Table

No Data has been found for this well.

Note: this is a public domestic well owned by California-American Water Co., located approximately 250' north of the north right-of-way of Plumas Ave. and approximately 350' from SCM 4.2.

Attachment E

DMA Exhibit and Table

Drainage Management Areas (sq. ft.)

D	MA No> PM0.005A	PM0.005B	PM0.005C	PM0.020	PM0.118	PM0.273	PM0.927	PM0.916	PM0.932	PM0.941	1500	5700	6000
Project Area (New + Replaced Areas)	2,800	300	400	13,600	1,000	-	8,400	9,100	15,400	8,700	1,800	13,600	1,600
New Impervious Area	1,400			2,300	100		1,500	1,300	1,500	4,500	400		
Replaced Impervious Area	1,400	300	400	9,600	100		6,900	4,200	11,000		1,400		
New Pervious Area									2,900				
Replaced Pervious Area				1,700				3,600		4,200		13,600	1,600
SCM Area (New Pervious Area)													
SCM Area (Replaced Pervious Area)					800								
Existing Areas to Remain (Outside Project Area)	-	-	-	-	15,600	516,900	129,200	-	19,100	22,500	5,200	78,500	46,700
Impervious Area to Remain	-	-	-	-	12,600	251,700	75,200		4,100	20,000	5,000	4,700	4,700
Pervious Area to Remain	-	-	-	-	3,000	265,200	54,000		15,000	2,500	200	73,800	42,000
Totals - Pre-Project	2,800	300	400	13,600	16,600	516,900	137,600	9,100	34,500	31,200	7,000	92,100	48,300
Total Impervious Area	1,400	300	400	9,600	12,700	251,700	82,100	4,200	18,000	20,000	6,400	4,700	4,700
Total Pervious Area	1,400	-	-	4,000	3,900	265,200	55,500	4,900	16,500	11,200	500	87,400	43,600
Pre-Project Imperviousness (Project Area Only)	50%	100%	100%	71%	10%		82%	46%	90%	0%	78%	0%	0%
Totals - Post-Project	2,800	300	400	13,600	16,600	516,900	137,600	9,100	34,500	31,200	7,000	92,100	48,300
Total New + Replaced Impervious Area	2,800	300	400	11,900	200	-	8,400	5,500	12,500	4,500	1,800	-	-
Total Impervious Area	2,800	300	400	11,900	12,800	251,700	83,600	5,500	16,600	24,500	6,800	4,700	4,700
Total Pervious Area (including SCM Area)	-	-	-	1,700	3,800	265,200	54,000	3,600	17,900	6,700	200	87,400	43,600
Pre-Project Imperviousness (Project Area Only)	100%	100%	100%	88%	20%		100%	60%	81%	52%	100%	0%	0%
Total Impervious + SCM Area *	2,800	300	400	11,900	13,600	251,700	83,600	5,500	16,600	24,500	6,800	4,700	4,700
Total Pervious Area - SCM Area *	-	-	-	1,700	3,000	265,200	54,000	3,600	17,900	6,700	200	87,400	43,600

*SCM surface area is treated as if it were impervious for Tier 4 calculations

= Self Treating Area

Summary and Calculations (sq. ft.)

DMA No>	PM0.005A	PM0.005B	PM0.005C	PM0.020	PM0.118	PM0.273	PM0.927	PM0.916	PM0.932	PM0.941	1500	5700	6000
Total New + Replaced Impervious Area (ft ²)	2,800	300	400	11,900	200	0	8,400	5,500	12,500	4,500	1,800	0	(
Exempt New + Replaced Impervious Area (ft ²)				2,100	100		2,100		6,200		1,400		
Exemption				B.1.b.ii.	B.1.b.i.		B.1.b.i.		B.1.b.i.		B.1.b.i.		
PCR 2: New + Replaced Impervious Area Subject to PCRs (ft ²)	2,800	300	400	9,800	100		6,300	5,500	6,300	4,500	400		
PCR 3: New + 50% of Replaced Impervious Area Subject to PCRs (ft ²)	2,100	150	200	5,000	50		2,850	3,400	800	4,500	1,100		
PCR 2 Mitigated Impervious Area (ft2)					12,800							4,700	
PCR 3 Mitigated Impervious Area (ft2)					12,800							4,700	
Drains to SCM:					#2d							#2d	
	Exemption									98	CN, impervio	ous areas	
B.1.b.i. Road and parking lot maintenance 45											CN, landscap	oe areas	

B.1.b.ii. Sidewalk and bicycle path or lane projects

76 CN, gravel areas

Areas in Sq. Mi., for input into HEC-HMS

DMA No>	PM0.005A	PM0.005B	PM0.005C	PM0.020	PM0.118	PM0.273	PM0.927	PM0.916	PM0.932	PM0.941	1500	5700	6000
Totals for Tier 4 Analysis - Pre-Project	0.000100			0.000488	0.000595		0.004936	0.000326	0.001238	0.001119	0.000251	0.003304	
Total Impervious Area	0.000050			0.000344	0.000456		0.002945	0.000151	0.000646	0.000717	0.000230	0.000169	
Total Pervious Area	0.000050			0.000143	0.000140		0.001991	0.000176	0.000592	0.000402	0.000018	0.003135	
Totals for Tier 4 Analysis - Post-Project	0.000100			0.000488	0.000595		0.004936	0.000326	0.001238	0.001119	0.000251	0.003304	
Total Impervious + SCM Area *	0.000100			0.000427	0.000488		0.002999	0.000197	0.000595	0.000879	0.000244	0.000169	
Total Pervious Area - SCM Area *	-			0.000061	0.000108		0.001937	0.000129	0.000642	0.000240	0.000007	0.003135	

*SCM surface area is treated as if it were impervious for Tier 4 calculations.

27,878,400 s.f. per sq. mile

GREEN =DMAs combined in HEC-HMS model for simplicity.

Drainage Management Areas (sq. ft.)

DMA No>	6400	24340	24400	24430	24450	25230	25250	25340	30000	30050	30150	30500	30900
Project Area (New + Replaced Areas)	14,200	-	800	-	14,500	1,400	-	10,400	5,200	3,900	500	2,500	300
New Impervious Area	1,200				3,100	200		1,100	1,100	3,900		2,500	
Replaced Impervious Area	11,900		800		11,400	1,200		9,300	3,300		500		300
New Pervious Area													
Replaced Pervious Area	1,100												
SCM Area (New Pervious Area)													
SCM Area (Replaced Pervious Area)													
Existing Areas to Remain (Outside Project Area)	-	33,300	239,200	120,200	65,600	64,800	362,300	801,000	800	6,800	-	3,500	-
Impervious Area to Remain		27,400	163,600	74,700	33,400	41,300	152,700	450,000	800				
Pervious Area to Remain		5,900	75,600	45,500	32,200	23,500	209,600	351,000		6,800		3,500	
Totals - Pre-Project	14,200	33,300	240,000	120,200	80,100	66,200	362,300	811,400	6,000	10,700	500	6,000	300
Total Impervious Area	11,900	27,400	164,400	74,700	44,800	42,500	152,700	459,300	4,100	-	500	-	300
Total Pervious Area	2,300	5,900	75,600	45,500	35,300	23,700	209,600	352,100	1,900	10,700	-	6,000	-
Pre-Project Imperviousness (Project Area Only)	84%		100%		79%	86%		89%	63%	0%	100%	0%	100%
Totals - Post-Project	14,200	33,300	240,000	120,200	80,100	66,200	362,300	811,400	6,000	10,700	500	6,000	300
Total New + Replaced Impervious Area	13,100	-	800	-	14,500	1,400	-	10,400	4,400	3,900	500	2,500	300
Total Impervious Area	13,100	27,400	164,400	74,700	47,900	42,700	152,700	460,400	5,200	3,900	500	2,500	300
Total Pervious Area (including SCM Area)	1,100	5,900	75,600	45,500	32,200	23,500	209,600	351,000	800	6,800	-	3,500	-
Pre-Project Imperviousness (Project Area Only)	92%		100%		100%	100%		100%	85%	100%	100%	100%	100%
Total Impervious + SCM Area *	13,100	27,400	164,400	74,700	47,900	42,700	152,700	460,400	5,200	3,900	500	2,500	300
Total Pervious Area - SCM Area *	1,100	5,900	75,600	45,500	32,200	23,500	209,600	351,000	800	6,800	-	3,500	-

*SCM surface area is treated as if it were impervious for Tier 4 calculation

Summary and Calculations (sq. ft.)

DMA No>	6400	24340	24400	24430	24450	25230	25250	25340	30000	30050	30150	30500	30900
Total New + Replaced Impervious Area (ft ²)	13,100	0	800	0	14,500	1,400	0	10,400	4,400	3,900	500	2,500	300
Exempt New + Replaced Impervious Area (ft ²)	11,900				3,300	500		1,900	4,400	1,400	500	2,500	300
Exemption	B.1.b.i.				B.1.b.i.	B.1.b.i.		B.1.b.i.	B.1.b.i.	B.1.b.ii.	B.1.b.i.	B.1.b.ii.	B.1.b.i.
PCR 2: New + Replaced Impervious Area Subject to PCRs (ft ²)	1,200		800		11,200	900		8,500					
PCR 3: New + 50% of Replaced Impervious Area Subject to PCRs (ft ²)	1,200		400		7,150	550		4,800					
PCR 2 Mitigated Impervious Area (ft2)						42,700							
PCR 3 Mitigated Impervious Area (ft2)													
Drains to SCM:						#10a							

Areas in Sq. Mi., for input into HEC-HMS

DMA No>	6400	24340	24400	24430	24450	25230	25250	25340	30000	30050	30150	30500	30900
Totals for Tier 4 Analysis - Pre-Project	0.000509				0.002873	0.002375		0.029105		0.000384		0.000215	
Total Impervious Area	0.000427				0.001607	0.001524		0.016475		-		-	
Total Pervious Area	0.000083				0.001266	0.000850		0.012630		0.000384		0.000215	
Totals for Tier 4 Analysis - Post-Project	0.000509				0.002873	0.002375		0.029105		0.000384		0.000215	
Total Impervious + SCM Area *	0.000470				0.001718	0.001532		0.016515		0.000140		0.000090	
Total Pervious Area - SCM Area *	0.000039				0.001155	0.000843		0.012590		0.000244		0.000126	

*SCM surface area is treated as if it were impervious for Tier 4 calculation

Note: Blank columns are DMAs with no change in impervious coverage. These DMAs are not included in the Tier 4 analysis.

DMA No>	30970	C1	C2	C3	Total
Project Area (New + Replaced Areas)	18,500	52,900	15,400	1,200	218,400
New Impervious Area	4,500	27,500	14,800		72,900
Replaced Impervious Area	14,000	3,500		1,200	92,700
New Pervious Area		3,900			6,800
Replaced Pervious Area		18,000	600		44,400
SCM Area (New Pervious Area)					-
SCM Area (Replaced Pervious Area)					800
Existing Areas to Remain (Outside Project Area)	6,400	-	-	39,500	2,577,100
Impervious Area to Remain	6,400			39,500	1,367,800
Pervious Area to Remain					1,209,300
Totals - Pre-Project	24,900	52,900	15,400	40,700	2,795,500
Total Impervious Area	20,400	7,400	-	40,700	1,467,300
Total Pervious Area	4,500	45,500	15,400	-	1,328,100
Pre-Project Imperviousness (Project Area Only)	76%	14%	0%	100%	46%
Totals - Post-Project	24,900	52,900	15,400	40,700	2,795,500
Total New + Replaced Impervious Area	18,500	31,000	14,800	1,200	165,600
Total Impervious Area	24,900	31,000	14,800	40,700	1,533,400
Total Pervious Area (including SCM Area)	-	21,900	600	-	1,262,100
Pre-Project Imperviousness (Project Area Only)	100%	59%	96%	100%	76%
Total Impervious + SCM Area *	24,900	31,000	14,800	40,700	1,534,200
Total Pervious Area - SCM Area *	-	21,900	600	-	1,261,300

Drainage Management Areas (sq. ft.)

*SCM surface area is treated as if it were impervious for Tier 4 calculation

Summary and Calculations (sq. ft.)

DMA No>	30970	C1	C2	C3	Total
Total New + Replaced Impervious Area (ft ²)	18,500	31,000	14,800	1,200	165,600
Exempt New + Replaced Impervious Area (ft ²)	2,800	31,000	14,800		87,200
Exemption	B.1.b.i.	B.1.b.ii.	B.1.b.ii.		
PCR 2: New + Replaced Impervious Area Subject to PCRs (ft ²)	15,700			1,200	75,900
PCR 3: New + 50% of Replaced Impervious Area Subject to PCRs (ft ²)	15,700			600	50,550
PCR 2 Mitigated Impervious Area (ft2)	24,900			40,700	125,800
PCR 3 Mitigated Impervious Area (ft2)	24,900			-	42,400
Drains to SCM:	#11c, 11d			#12a	

Areas in Sq. Mi., for input into HEC-HMS

DMA No>	30970	C1	C2	C3	Total
Totals for Tier 4 Analysis - Pre-Project	0.000893	0.001898	0.000552		0.051161
Total Impervious Area	0.000732	0.000265	-		0.026738
Total Pervious Area	0.000161	0.001632	0.000552		0.024420
Totals for Tier 4 Analysis - Post-Project	0.000893	0.001898	0.000552		0.051161
Total Impervious + SCM Area *	0.000893	0.001112	0.000531		0.029098
Total Pervious Area - SCM Area *	-	0.000786	0.000022		0.022064
*SCM surface area is treated as if it were impervious for Tier 4 calculation		67%	-		

*SCM surface area is treated as if it were impervious for Tier 4 calculation

ONSTRUCTION Ũ NOT

F O R

Ř

FOR NOT

Attachment F

SCM Stage-Storage Tables

Project FORMAG Job # 4065 Prepared by NM

Sheet # / Date 6/15/22

INFILTRATION TRENCH

 $VOL = 6' \times 6' \times 80' \times 0.35 + \frac{T}{4} (4')^2 \times 76' \times 0.65 = 1628 cF$ Rock = 1008 cf Pire = 620 cf

Attachment G

Central Coast SCM Calculator (PCR 3 Calculations)

Central Coast Region Stormwater Control Measure Sizing Calculator

Version: 7/2/2018

1. Project Information					
Project name:	FORTAG Phase 1				
Project location:	Del Rey Oaks				
Tier 2/Tier 3:		Tier 3 - Retention			
Design rainfall depth (in)	1.3				
Total project area (ft2)					
Total DMA area (ft2):	0				
Total new impervious a					
Total replaced impervio	ous within a USA (ft2):				
Total replaced impervio					
Total pervious/landscape area (ft2):					
Total SCM area (ft2):					

2. DMA Characterization							
Name	DMA Type	Area (ft2)	Surface Type	New, Replaced?	Connection		
PM 0.118 NIA	Drains to SCM	100	Concrete or asphalt	New	SCM 2		
PM 0.118 RIA	Drains to SCM	100	Concrete or asphalt	New	SCM 2		
PM 0.118 IA to Remain	Drains to SCM	12600	Concrete or asphalt	New	SCM 2		
5700 IA to Remain	Drains to SCM	4700	Concrete or asphalt	New	SCM 2		
30970 NIA	Drains to SCM	4500	Concrete or asphalt	New	SCM 11d		
30970 RIA	Drains to SCM	14000	Concrete or asphalt	New	SCM 11d		
30970 IA to Remain	Drains to SCM	6400	Concrete or asphalt	New	SCM 11d		

DMA Summary Area		
Total assigned DMA area (ft2):	42400	
New impervious area (ft2):	42400	Check DMA table areas against plan sheet areas
Replaced impervious within a USA (ft2):	0	
Replaced impervious not in a USA (ft2):	0	
Total pervious/landscape area (ft2):	0	

3. SCM Characterization Flow Control							
Name	SCM Type	Safety Factor	SCM Soil Type	Infilt. Rate (in/hr)	Area (ft2)	Orifice?	Depth (in)
SCM 2	Bioretention	1	Site-Specific	1	800	No	
SCM 11d	Direct Infiltration	2	Site-Specific	2	480		

4. Run SBUH Model

5. SCM Minimum S	izing Requirements				
SCM Name	Min. Required Storage Vol. (ft3)	Depth Below Underdrain (ft)	Drain Time (hours)	Orifice Diameter (in)	
SCM 2	648	2.31	6.5		

Attachment H

HEC-HMS Model, Inputs and Results

Existing Model

Proposed Model

Subbasin	Initial A (IN)	Curve N	Impervious (%)
ALL OTHER POST		45	59
ALL OTHER PRE		45	58
C1 C2 POST		76	67
C1 C2 PRE		76	0.0
DMA 30970		98	0.0
PM 118 and 5700 PERV		45	0.0
PM 118 and 5700 IMP		98	0.0

Model Notes:

- Watersheds with no change in imperviuos coverage and which do not drain to SCMs (DMAs PM0.005B, PM0.005C, PM0.273, 6000, 24340, 24430, 24430, 25250, 30000, 30150, 30900, and C3) are not included in the model.
- 2. Existing Watersheds C1 and C2 (existing gravel road) use CN=76. All other existing pervious areas use CN=45. All impervious areas use CN=98.
- 3. Due to their small size, a Lag Time of 10 minutes is used for all watersheds, as a practical minimum.

2-year Analysis Results

Project: FORTAG	Simulation Run: 002 year
-----------------	--------------------------

Start of Run:	01Jan2000, 00:00	Basin Model:	Site
End of Run:	02Jan2000, 00:00	Meteorologic Model:	002 year
Compute Time	e:09Jun2023, 16:56:34	Control Specifications	Control 1:

Show Elements: All Elements	Vol	ume Units: 🔘 IN (ACRE-FT Sc	orting: Alphabetic \lor
Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(MI2)	(CFS)		(ACRE-FT)
ALL OTHER POST	0.043919	18.29448	01Jan2000, 10:03	2.64578
ALL OTHER PRE	0.048712	19.94709	01Jan2000, 10:03	2.88479
C1 C2 POST	0.002450	1.22273	01Jan2000, 10:03	0.18359
C1 C2 PRE	0.002450	0.20663	01Jan2000, 10:06	0.04843
DMA 30970	0.000893	0.60299	01Jan2000, 10:03	0.08047
EXISTING DISCHARGE	0.051162	20.14045	01Jan2000, 10:03	2.93321
PM 118 and 5700 PERV	0.003243	0.00000	01Jan2000, 00:00	0.00000
PM 118 and 5700 IMP	0.000656	0.44296	01Jan2000, 10:03	0.05911
POST DISCHARGE	0.051161	19.59921	01Jan2000, 10:03	2.87485
SCM INFILTRATION	0.000000	0.09700	01Jan2000, 09:45	0.05819
SCM 11d UG CHAMBERS	0.000893	0.16087	01Jan2000, 10:36	0.04467
SCM 11d UG CHAMB INFIL	0.000893	0.15687	01Jan2000, 10:36	0.03755
SCM 2 BIORET	0.003899	0.18500	01Jan2000, 10:06	0.05900
SCM 2 BIORET INFIL	0.003899	0.09200	01Jan2000, 10:06	0.00793

10-year Analysis Results

Project: FORTAG Simulation Run: 010 year

Start of Run: 01Jan2000, 00:00 End of Run: 02Jan2000, 00:00 Compute Time: DATA CHANGED, RECOMPUTE Control Specifications: Control 1

Basin Model: Site Meteorologic Model: 010 year

Show Elements: All Elements	Vol	lume Units: () IN (ACRE-FT Sorti	ng: Alphabetic ~
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (ACRE-FT)
ALL OTHER POST	0.043919	28.96627	01Jan2000, 10:03	4.21498
ALL OTHER PRE	0.048712	31.58290	01Jan2000, 10:03	4.59692
C1 C2 POST	0.002450	2.12375	01Jan2000, 10:03	0.31006
C1 C2 PRE	0.002450	0.88199	01Jan2000, 10:04	0.13539
DMA 30970	0.000893	0.97850	01Jan2000, 10:03	0.13333
EXISTING DISCHARGE	0.051162	32.45799	01Jan2000, 10:03	4.73231
PM 118 and 5700 PERV	0.003243	0.00855	01Jan2000, 21:54	0.00465
PM 118 and 5700 IMP	0.000656	0.71881	01Jan2000, 10:03	0.09794
POST DISCHARGE	0.051161	32.19916	01Jan2000, 10:03	4.63502
SCM INFILTRATION	0.000000	0.09700	01Jan2000, 09:15	0.08985
SCM 11d UG CHAMBERS	0.000893	1.23373	01Jan2000, 09:57	0.09752
SCM 11d UG CHAMB INFIL	0.000893	1.22973	01Jan2000, 09:57	0.09012
SCM 2 BIORET	0.003899	0.18500	01Jan2000, 09:58	0.10232
SCM 2 BIORET INFIL	0.003899	0.09200	01Jan2000, 09:58	0.01987

Chapter 2	Estimating Runoff	Estimating Runoff		Technical Release 55 Urban Hydrology for Small Watersheds				
	Existing CN for DMAs C1 and C2		C	N for all	impervi	ous		
Table 2-2a Runoff curve i	numbers for urban areas ⊻		a		/			
(Cover description			Curve n hydrologic	umbers for soil group			
Cover type and hydrologic	e condition A	verage percent pervious area 2⁄	А	в	С	D		
Fully developed urban areas	(vegetation established)	\backslash						
Open space (lawns, parks, go Poor condition (grass Fair condition (grass Good condition (grass	If courses, cemeteries, etc.) ³ /: cover < 50%) cover 50% to 75%)		68 49 39	79 69 61	86 79 74	89 84 80		
Impervious areas: Paved parking lots, roofs, (excluding right-of-wa Streets and roads:	driveways, etc. y)		98	98	98	98		
Paved; curbs and stor right-of-way) Paved; open ditches (i Gravel (including righ Dirt (including right o	m sewers (excluding ncluding right-of-way) t-of-way)		98 83 76 72	98 89 85 82	98 92 89 87	98 93 91 80		
Western desert urban areas: Natural desert landscapin Artificial desert landscapin desert shrub with 1- to	g (pervious areas only) 4/ ng (impervious weed barrier, o 2-inch sand or gravel mulch		63	77	85	88		
and basin borders) Urban districts: Commercial and business Industrial		. 85 72	96 89 81	96 92 88	96 94 91	96 95 93		
Residential districts by averag 1/8 acre or less (town hou 1/4 acre	ge lot size: ses)	. 65 38 30 25 20 12	77 61 57 54 51 46	85 75 72 70 68 65	90 83 81 80 79 77	92 87 86 85 84 82		
Developing urban areas								
Newly graded areas (pervious areas only, no v	egetation) ^{5/}		77	86	91	94		
Idle lands (CN's are determin similar to those in table 2-	ed using cover types 2c)							

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space

cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Table 2-2bRunoff curve numbers for cultivated agricultural lands 1/2

Cover description			Curve numbers for hydrologic soil group			
	-	Hydrologic		v 0	01	
Cover type	Treatment ^{2/}	condition 3/	А	В	С	D
Fallow	Bare soil	_	77	86	91	94
	Crop residue cover (CR)	Poor	76	85	90	93
	•	Good	74	83	88	90
Row crops	Straight row (SR)	Poor	72	81	88	91
-		Good	67	78	85	89
	SR + CR	Poor	71	80	87	90
		Good	64	75	82	85
	Contoured (C)	Poor	70	79	84	88
		Good	65	75	82	86
	C + CR	Poor	69	78	83	87
		Good	64	74	81	85
	Contoured & terraced (C&T)	Poor	66	74	80	82
		Good	62	71	78	81
	C&T+ CR	Poor	65	73	79	81
		Good	61	70	77	80
Small grain	SR	Poor	65	76	84	88
		Good	63	75	83	87
	SR + CR	Poor	64	75	83	86
		Good	60	72	80	84
	С	Poor	63	74	82	85
		Good	61	73	81	84
	C + CR	Poor	62	73	81	84
		Good	60	72	80	83
	C&T	Poor	61	72	79	82
		Good	59	70	78	81
	C&T+ CR	Poor	60	71	78	81
		Good	58	69	77	80
Close-seeded	SR	Poor	66	77	85	89
or broadcast		Good	58	72	81	85
legumes or	С	Poor	64	75	83	85
rotation		Good	55	69	78	83
meadow	C&T	Poor	63	73	80	83
		Good	51	67	76	80

 $^{\rm 1}$ Average runoff condition, and $\rm I_a{=}0.2S$

 2 Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

³ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good \geq 20%), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

pre- and post-project

CN for undeveloped

areas

Table 2-2c Runoff curve numbers for other agricultural lands $1\!\!/$

Cover description		Curve numbers for hydrologic soil group			
Cover type	Hydrologic condition	А	В	С	D
Pasture, grassland, or range—continuous forage for grazing. 2/	Poor Fair Good	68 49 39	79 69 61	86 79 74	89 84 80
Meadow—continuous grass, protected from grazing and generally mowed for hay.	—	30	58	71	78
Brush—brush-weed-grass mixture with brush the major element. $\underline{\mathscr{Y}}$	Poor Fair Good	48 35 30 4⁄		77 70 65	83 77 73
Woods—grass combination (orchard or tree farm). $5/$	Poor Fair Good	57 43 32	73 65 58	82 76 72	86 82 79
Woods. 🖄	Poor Fair Good	45 36 30 ≇	66 60 55	77 73 70	83 79 77
Farmsteads—buildings, lanes, driveways, and surrounding lots.	_	59	74	82	86

Average runoff condition, and $I_a = 0.2S$.

 $\mathbf{2}$ *Poor:* <50%) ground cover or heavily grazed with no mulch. 50 to 75% ground cover and not heavily grazed. Fair:

Good: > 75% ground cover and lightly or only occasionally grazed. 3

Poor: <50% ground cover.

50 to 75% ground cover. Fair:

Good: >75% ground cover.

4 Actual curve number is less than 30; use CN = 30 for runoff computations.

5CN's shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CN's for woods and pasture.

6 *Poor:* Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. Fair: Woods are grazed but not burned, and some forest litter covers the soil. Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

Table 2-2dRunoff curve numbers for arid and semiarid rangelands 1/2

Cover description		Curve numbers for hydrologic soil group				
Cover type	Hydrologic condition ^{2/}	A <u>3</u> /	В	C	D	
Herbaceous—mixture of grass, weeds, and	Poor		80	87	93	
low-growing brush, with brush the	Fair		71	81	89	
minor element.	Good		62	74	85	
Oak-aspen—mountain brush mixture of oak brush,	Poor		66	74	79	
aspen, mountain mahogany, bitter brush, maple,	Fair		48	57	63	
and other brush.	Good		30	41	48	
Pinyon-juniper—pinyon, juniper, or both;	Poor		75	85	89	
grass understory.	Fair		58	73	80	
	Good		41	61	71	
Sagebrush with grass understory.	Poor		67	80	85	
	Fair		51	63	70	
	Good		35	47	55	
Desert shrub—major plants include saltbush,	Poor	63	77	85	88	
greasewood, creosotebush, blackbrush, bursage,	Fair	55	72	81	86	
palo verde, mesquite, and cactus.	Good	49	68	79	84	

 1 $\,$ Average runoff condition, and $I_a,$ = 0.2S. For range in humid regions, use table 2-2c.

 2 $\,$ Poor: <30% ground cover (litter, grass, and brush overstory).

Fair: 30 to 70% ground cover.

Good: > 70% ground cover.

³ Curve numbers for group A have been developed only for desert shrub.