

Adaptive Signals

TAMC BOARD
OCTOBER 23, 2024

Traffic Signal Overview

- 1. Signals typically used to control intersections with heavy movements in several conflicting directions
- 2. Lower volume intersections typically are served with STOP control
- 3. Higher volume intersections may become freeways or have overpasses
- 4. Roundabouts are an alternative to signals in most cases

Fig.1 States (phase pairs) Fig.2 Sequence of phases

Types of Signal Operation

Free (uncoordinated)

First come first served

Serve in a very well-defined sequence

Flexible and treats everyone the same

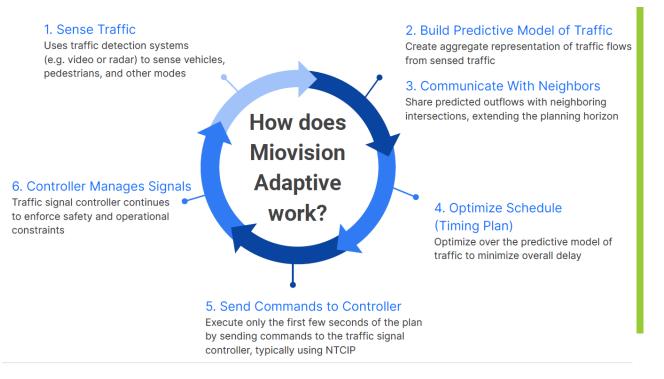
Coordinated

Set a specific cycle length for a specific time of day

Serve all minor movements then "rest" on mainline green for remainder of cycle

Rigid and unbending to benefit mainline travel

Adaptive (AI)

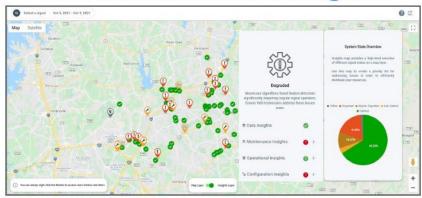

Hybrid of Free and Coordinated modes

Switches as needed to best serve current conditions

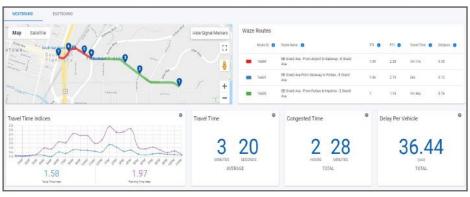
Uses real-time information to quickly adapt to conditions in the field

Traffic Signals: Comparing Modes of Operations

Condition	Free (uncoordinated)	Coordinated	Adaptive
Off-Peak / Light Traffic	Good	Poor	Great
Peak Hour / Heavy Traffic	Poor	Great	Great
Incident	Good	Poor	Great
Special Event	Fair	Poor	Great
Close Intersections	Poor	Good	Great
Intersections Spaced Far Apart	Fair	Poor	Good

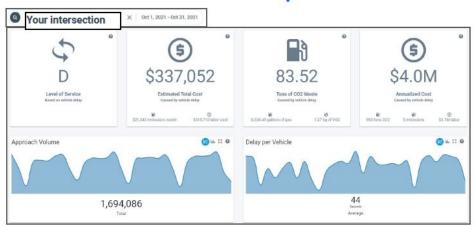


Why is Adaptive So Much Better


If you can't measure something, you can't understand it. If you can't understand it, you can't control it. If you can't control it, you can't improve it.

H. James Harrington

Maintenance Insights


Travel Time & Corridor

Signal Performance

Executive Reports

Proposed Benefits

Adaptive Traffic Signal Control

40%*

Less time spent idling

25%*

Lower travel times

30%-40%*

Fewer stops

20%*

Lower emissions

-60%

Stops Reduction

-57%

Delay Reduction

-24%

Travel Time Reduction

-23%

Reduction

-17%

-23%

Emissions Fuel Consumption Reduction

Crash Reduction

Proposal

- Caltrans pilot project update
- TAMC offer to fund Phase I (Pilot Project)
- Phase I cost estimate = \$250,000
- 4 intersections (east side)
- Phase II once Phase I results validated