

Fort Ord Regional Trail & Greenway Retaining Wall No. 1 Del Rey Oaks, California

(Post Mile MON 0.921)

Foundation Report for Retaining Wall No. 1

Report Status – Final

April 2023

April 7, 2023

Ms. Lindsey Van Parys GHD 2200 21st Street Sacramento, CA 95818

Subject: Final Foundation Report for Retaining Wall No 1 Transportation Agency for Monterey County Fort Ord Regional Trail & Greenway Del Rey Oaks, California

Dear Lindsey,

We are pleased to submit the attached Final Foundation Report for the Transportation Agency of Monterey County's (TAMC) Retaining Wall No. 1 at the bridge crossing for the planned Fort Ord Regional Trail & Greenway (FORTAG) in Del Rey Oaks, California.

We appreciate the opportunity to serve GHD and TAMC on this project. Please contact us if you have any questions about this report.

Sincerely,

McMILLEN JACOBS ASSOCIATES

Şu Pyae Sone Soe, PE Dru Nielson, PG CEG orman Joyal, PE, G Principal Geologist Project Engineer ineer ENGINEERING ONAL CERT REG/ No. 1854 5651 OFCAL

Distribution: GHD (PDF) – Email Delivery Job No.: 6231.0

Table of Contents

1.0	1.0 Introduction1							
2.0	2.0 Project Description1							
3.0	.0 Geotechnical Investigation							
4.0	Labo	ratory T	Testing Program	4				
5.0	Geote	echnica	I Conditions	5				
	5.1	Geolog	gy	5				
	5.2	Surfac	e Conditions	5				
		5.2.1	Near Surface Soil Mapping	6				
	5.3	Subsu	rface Conditions	6				
		5.3.1	Existing Subsurface Utilities	6				
		5.3.2	Exploration Borings and CPTs	6				
	5.4	Groun	dwater Level	8				
	5.5	Corros	sion Evaluation	9				
	5.6	Seism	ic Information	9				
		5.6.1	Site Seismic Parameters	9				
		5.6.2	Ground Motion Parameters1	0				
		5.6.3	Fault Rupture 1	0				
		5.6.4	Liquefaction1	1				
		5.6.5	Liquefaction-Induced Lateral Spreading1	2				
6.0	Geote	echnica	I Recommendations1	5				
	6.1	Groun	d Material Properties, Models, and Loading1	5				
	6.2	Retain	ing Wall No. 1 Design Considerations1	7				
		6.2.1	Liquefaction-Induced Settlement and Downdrag1	7				
		6.2.2	Liquefaction-Induced Lateral Spreading Mitigation1	7				
		6.2.3	Global Stability Analysis 1	8				
	6.3	Retain	ing Wall No. 1 Construction Considerations1	9				
	6.4	Notes	for Specifications1	9				
	6.5	Notes	for Construction1	9				
7.0	Limit	ations .		:0				
8.0	.0 References							

List of Tables

ble 1. Summary of the Project Components2

Table 2. Partial Summary of Borehole/CPT Data
Table 3. Partial Summary of Information from Project Boring Logs
Table 4. Partial Summary of Information from CPTs 7
Table 5. Measured Groundwater Level in Project Borings 8
Table 6. Soil Corrosion Test Summary 9
Table 7. Seismic Site Classification 9
Table 8. Caltrans-Based Ground Motion Parameters 10
Table 9. Summary of Liquefaction Input Parameters 11
Table 10. Summary of CPT-based analysis results
Table 11. Soil Parameters for Pseudo-Static Slope Stability Analysis 13
Table 12. Summary of Liquefaction-induced Lateral Spreading Assessment Result
Table 13. Yield Acceleration 14
Table 14. Foundation Material Parameters for Design 16
Table 15. Preliminary Retained Material Parameters for Design
Table 16. Liquefaction Potential at Retaining Wall No. 1
Table 17. Stability Analysis Results 18

List of Figures

Figure 1. Project Area Map Figure 2.1. Geologic Map Figure 2.2. Geologic Map Figure 3. Soil Map Figure 4. Topographic Survey Map Figure 5. Schematic Subsurface Exploration Profile C-C' Figure 6. Vs30 Map Figure 7. Fault Map Figure 8. Earthquake Map Figure 9. Liquefaction Susceptibility Map Figure 10. Lateral Earth Pressures for Retaining Wall No. 1

Appendices

Appendix A	Project Boring	Log	Legend
T T T T		- 0	

- Appendix B Project Boring Logs
- Appendix C Laboratory Tests Results
- Appendix D Cone Penetration Test Report

- Appendix E Acceleration Response Spectrum
- Appendix F Liquefaction Analysis Results
- Appendix G Pseudo-static Slope Stability Analysis Results
- Appendix H Pseudo-static Slope Stability Analysis for Existing Slope
- Appendix I Global Stability Analysis
- Appendix J Comment Response Log

1.0 Introduction

McMillen Jacobs Associates (MJA) has prepared this foundation report for the Transportation Agency of Monterey County's (TAMC) planned Retaining Wall No. 1 connected to State Route (SR) 218 Undercrossing Bridge (bridge) of the Fort Ord Regional Trail & Greenway (FORTAG) Project in Del Rey Oaks, California (Figure 1).

This report summarizes findings of a geotechnical investigation and presents geotechnical design recommendations for Retaining Wall No. 1 near SR 218 Post Mile Mon 0.921 (the project area). The recommendations presented herein are based on the Retaining Wall No. 1 General Plan Drawing dated 4/7/23 (General Plan) from Cornerstone Structural Engineering Group, 95% submittal Civil and Structural Plans from GHD, Caltrans comments received during a design team conference call on March 17, 2023, and our interpretation of the geotechnical findings for the project area that are summarized in Sections 3.0 and 5.0 herein. In addition to this report, we have provided a Geotechnical Design Report (GDR) for the project and a Geotechnical Foundation Report that provides recommendations for the SR 218 Undercrossing Bridge under two separate and independent reports (see MJA 2023a and 2023b).

2.0 Project Description

The project consists of a planned SR 218 undercrossing bridge and a retaining wall connected to the bridge that extends about 130 feet northeast from SR 218 (Figure 1). A partial summary of project components is provided in Table 1. A separate discussion of the ground conditions at the planned SR 218 undercrossing was included in the Structure Selection Fact Sheet for the project (MJA, 2021a). Initially, the trail was planned to undercross SR 218 within a structure to be installed by trenchless or tunneling means. The geotechnical investigation that was initially completed for the project was scoped based on that initial plan (MJA, 2021b). Subsequent to the completion of borings B-4 and B-5b, it was determined by the design team that conflicts with existing utilities and elevation requirements for the undercrossing would prevent the installation of an undercrossing structure by trenchless or tunneling means, and that an undercrossing bridge would be required (see Section 5.3.1).

The scope of the initial geotechnical investigation for a trenchless option included 40-foot-deep exploration borings (B-4 and B-5b as described in Section 5.3.2) at the planned crossing. Boring B-4 was drilled near what is now the southeast corner of the planned bridge and encountered elastic silt and peat below a depth of 34.5 feet. This type of soil would not have had a significant impact on the originally planned design for trenchless/tunnel installation of an SR 218 undercrossing structure; however, it does have an impact on the current design of a deep foundation support for the planned bridge (i.e., driven piles). Consequently, it was necessary to perform additional deeper subsurface explorations to define the ground conditions in the project area for the purpose of designing driven-pile support for the planned bridge. Two cone penetration tests (CPTs) were completed on the south side of the bridge at the locations illustrated in Figure 1. The CPTs were pushed to refusal as indicated in Appendix D.

Four CPTs were planned, one at each abutment corner of the bridge, but only two CPTs could be advanced on the south side of the bridge. The two planned CPTs on the north side of the bridge encountered sand consistent with utility backfill in the pre-CPT hand auger holes excavated to clear the

upper 5 to 6 feet prior to CPT advance. For Safety, the CPT contractor's policy is to not advance CPTs in material that is consistent with trench backfill materials.

Retaining Wall No. 1 will be approximately 136.3 feet long and approximately 3 to 15 feet high. Portions of the retaining wall will be designed as a tiered retaining wall system with an upgradient upper retaining wall (Retaining Wall No. 2) located at least 11 feet from Retaining Wall No. 1. Geotechnical investigations and related recommendations for the design of Retaining Wall No. 2 are not part of this scope of work, which only addresses Caltrans requirements. Elevations and coordinates referred to in this report are based on the 1988 North American Vertical Datum (NAVD 88) and the 1984 Whole Geodetic System (WGS 84), respectively.

Component	SR 218	Bike Trail	Stations	Length	Maximum Height	
Component	Stations ¹	Begin	End	(feet)	(feet)	
Retaining Wall No.1	104+88	202+00	203+30	136.3	12	

Table 1. Summary of the Project Components

¹ SR 218 and bike trail stationing based on project drawings by Cornerstone (2023).

3.0 Geotechnical Investigation

The location of completed borings and cone penetration tests (CPTs) for the project are mapped in Figure 1. Boring log legends and the logs of the borings are provided in Appendix A and B, respectively, and the CPT results are provided in Appendix D. Table 2 summarizes information from the borings and CPTs. The detail descriptions of the field explorations are provided in the GDR prepared by MJA (2023a).

Borehole/ CPT No. ⁽¹⁾	orehole/ Nearby PT No. ⁽¹⁾ Project Component		Northing/Easting (Latitude/Longitude) ⁽²⁾		Depth, ft	Completion Date
B-4	Bridge	36.593614	-121.836221	84.5	40	8/2021
B-5a ⁽⁵⁾	Bridge; Retaining Wall No. 1	36.594007	-121.836316	95.5	2	8/2021
B-5b	Bridge; Retaining Wall No. 1	36.593986	-121.836339	95.5	40	8/2021
CPT-1A ⁽⁴⁾	Bridge	36.593750	-121.836247	91.5	2.4	2/2023
CPT-1B	Bridge	36.593807	-121.836247	91.5	63.4	2/2023
CPT-2	Bridge	36.593714	-121.836211	88.5	66.5	2/2023

Table 2.	Partial	Summary	of	Borehole/CPT Data	1
					-

⁽¹⁾ Locations mapped in Figure 1. Logs and results provided in Appendices B (borings) and D (CPT results).

⁽²⁾ From Google Earth.

⁽³⁾ Based on topographic survey by Whitson (2020).

⁽⁴⁾ CPT rig shifted when refusal was encountered on suspected concrete and had to be abandoned and relocated to 1B.

⁽⁵⁾ Refusal on concrete. Abandoned and relocated to 5B.

4.0 Laboratory Testing Program

Moisture content, unit weight, Atterberg limits, grain size, unconfined compression, soil corrosion, and direct shear tests were performed on ground samples retrieved from project borings. The results of the tests are summarized in the boring logs provided in Appendix B, and in laboratory test results provided in Appendix C.

5.0 Geotechnical Conditions

5.1 Geology

The project area is located within the Coast Ranges Geomorphic Province, which is characterized by northwest-trending mountain ranges and valleys that run subparallel to the region's fault zones. The region's fault zones are summarized in Section 0. The Coast Ranges generally consist of Mesozoic and Cenozoic sedimentary strata overlain by alluvium. Geology maps of the region have been completed by several authors (e.g., Hartwell et al., 2016; Dibblee and Minch, 2007; Clark et al., 1997; Dupre 1990; Dibblee et al., 1974), including those provided in Figures 2.1 and 2.2.

The planned SR 218 Undercrossing Bridge and the portion of Retaining Wall No.1 that will be connected to the bridge are mapped to be underlain at the ground surface by Holocene-age alluvial deposits of unconsolidated gravel, sand, silt, and clay that were likely deposited by the nearby Laguna Del Rey Creek. The remaining portion of the Retaining Wall No.1 is mapped to be underlain at the ground surface by Holocene-age alluvial fan deposits and highly weathered Miocene-age Monterey Formation. The Monterey Formation includes calcareous to siliceous claystone, siltstone, and sandstone; porcelanite; chert; diatomite; and bentonite.

Debris flows are a common form of slope failure in Monterey County; however, no evidence of landslides or debris flow instability was observed in the project area during our geotechnical investigation, and there are no known landslides or debris flow instabilities recorded for the project area in the U.S. Geological Survey's Landslide Inventory database.¹

Peat was logged at a depth of 37 feet in boring B-4. Peat is a soil type that contains a high percentage of organic matter. The peat encountered in boring B-4 is most likely from organic matter that accumulated in historical meanders of Laguna Del Rey Creek. The CPTs also confirmed the presence of a very soft layer between about 40 and 55 feet below ground surface affirming the presence and thickness of these deposits.

5.2 Surface Conditions

Land use near the project area consists of roadways, commercial and residential properties, and recreational and preservation areas. Surface conditions at the planned bridge and retaining wall consist of a paved roadway and vegetation (see Figures 1, 3, and 4). The vegetation along the planned retaining wall predominantly consists of trees and shrubs. Overhead power lines run parallel to the northwest shoulder of SR 218.

Based on the topographic survey map by Whitson Engineers (2020) provided in Figure 4, SR 218 embankments at the location of the bridge are steeper on the northeast side and flatter on the southwest side. As indicated in Figure 1, a retaining wall will be constructed along the slope located northeast of the bridge. This slope has a gradient of less than 1.5H:1V and heights between 5 and 12 feet.

¹ <u>https://usgs.maps.arcgis.com/apps/webappviewer/index.html?id=ae120962f459434b8c904b456c82669d</u>

5.2.1 Near Surface Soil Mapping

Near surface soils in the project area are mapped and described in Figure 3. The planned bridge and retaining wall are mapped to be in Rindge muck. As indicated in Figure 3, Rindge muck is classified by the U.S. Soil Conservation Service as Peat. Areas mapped as Rindge muck have a seasonal high-water table between 0 and 6 feet below ground surface. Risk of corrosion in Rindge muck is high in uncoated steel and moderate in concrete. CPT-1B confirms the presence of the peat layer encountered in B-4 at a depth between 40 and 55 feet based on the cone and sleeve resistance with a CPT interpretation of sensitive fine-grained materials. CPT-2 encountered slightly stronger clays at these depths which may reflect a transition out of the sensitive peaty clays.

5.3 Subsurface Conditions

5.3.1 Existing Subsurface Utilities

The approximate location of existing utilities mapped in the project area are shown in Figures 4 and 5.1, and include the following:

- 4" X 2 AT&T lines (to be relocated)
- 2" AT&T line (to be relocated)
- 8" W (water pipeline, to be relocated)
- 16" W (water pipeline, to be relocated)
- 4" G (gas pipeline, to be relocated)
- 16" SD (storm drain pipeline, to be removed)
- 12" SS (sanitary sewer pipeline, to remain)

There may be other utilities in the area that are not shown in these figures. We have no firsthand information as to the size and shape of the excavations that were performed to install utilities in the project area (e.g., with vertical and/or side-sloped sidewalls), nor for the material that was used to backfill the excavations—including materials used as a foundation for and below the utility, for embedment used immediately around the utility, and for backfill above the utility and below the pavement surface.

Overhead utilities are also present at the site on the north side of SR 218 above the road shoulder.

5.3.2 Exploration Borings and CPTs

The location of exploration borings and CPTs completed for the project are mapped in Figure 1, and a subsurface profile across the slope and through the retaining wall of the project is provided in Figure 5. Boring log legends and the logs of the borings are provided in Appendix A and Appendix B, respectively, and the CPT results are provided in Appendix D. A partial summary of information from the boring logs and CPTs is provided in Table 3 and Table 4, respectively.

		BGS Depth ⁽³⁾ (ft)			Bedrock or			
Boring ⁽¹⁾	Elev (ft) ⁽²⁾	Total	to GW (Seep) / Level	Interval (ft)	USCS ⁽⁴⁾ Group Symbol	SPT ⁽⁵⁾ (N)	Qu ⁽⁵⁾ (ksf)	Notes ⁽⁶⁾
				0–16	SM/SC	5, 7	-	fill in upper 5'
				16–17.5	ML	4	-	$W_c = 43, V_d = 74 \text{ pcf}$
B-4			(10)/31.0	17.5–23.5	SM/SC	9	-	
	84.5	40		23.5–25.5	CL/CH	-	-	
				25.5–34.5	SP-SM	12, 20	-	
				34.5–37	МН	-	-	diatomite/bentonite (?)
				37–40	MH & PT	4	-	LL =112, PI = 42
B-5a	95.5	2	NE	0–2	SP	-	-	refusal in fill on concrete & metal
				0–3	SM	-	-	fill
B-5b	95.5	5.5 40	40 26.0	3–12	SP-SM/SP-SC	4	-	concrete in fill from 10.5 to 12 feet that was eventually bypassed
				12–32	SM/SC	3, 4, 4, 5	-	$W_c = 78, \ \gamma_d = 52 \ pcf$ (tuffaceous)
				32–40	MH & Bedrock	26, 27	0.4	Monterey Formation (?)

Table 3. Partial Summary of Information from Project Boring Logs

⁽¹⁾ Drilled in August 2021. See Figure 1 for mapped boring locations. See logs and lab test results in Appendices B and C. ⁽²⁾ Ground surface elevation from Whitson (2020).

⁽³⁾ BGS = below ground surface. GW = groundwater. NE = not encountered. Groundwater seepage depth during drilling and groundwater level depth measured in boring at time of backfilling, not necessarily the static groundwater level depth.

⁽⁴⁾ Unified Soil Classification System (USCS) and group symbol defined in Appendix A.

⁽⁵⁾ N = greatest ASTM D1586 Standard Penetration Test Blow Count for interval. Qu = unconfined compressive strength.

 $^{(6)}$ W_c = moisture content. γ_{d} = dry density.

Table 4. Partial Summary of Information from CPTs

CPTs	Elevation	BGS Depth ⁽³⁾ (ft) Total to GW		Soil Behavior Type		
(1)	(ft) ⁽²⁾			(SBT) ⁽⁴⁾	Notes ⁽⁵⁾	
CPT-1A	90.0	2.38	NE	sands, sand mixtures	CPT rig shifted when refusal was encountered on suspected concrete and had to be abandoned	
CPT-1B	91.5	63.4	17.6	sand mixtures, silt mixtures, sands, clays	Refusal on concrete at ~11 feet, punched through concrete and advanced to refusal N60 value ranging from 1 to 70 bpf Sensitive fine-grained layers	
CPT-2	88.5	66.5	14.6	sand mixtures, sands, silt mixtures, clays	N60 value ranging from 1 to 66 bpf	

⁽¹⁾ Performed in February 2023. See Figure 1 for mapped CPT locations. See CPT results in Appendix D.

⁽²⁾ Ground surface elevation from Whitson (2020).

⁽³⁾ BGS = Below ground surface. GW = Groundwater. NE = not encountered.

⁽⁴⁾ SBT scatter plots provided in Appendix D.

⁽⁵⁾ N60 = SPT N value at 60% energy calculated from q/N ratios assigned to each SBT zone using Robertson and Wride (1998). bpf = blow per foot.

5.4 Groundwater Level

The depth to groundwater was measured and logged in project borings during and immediately after their drilling (see logs of borings in Appendix B) and is summarized in Table 5. The groundwater level estimated from project CPTs is also summarized in Table 5, and is based on the shallowest pore pressure dissipation tests results performed in and during the CPTs.

The project CPTs were performed in February 2023, and therefore the groundwater level estimated in the project CPTs is during a rainy, winter-time season as compared to a dry summer-time season like that when the project borings were completed in August 2021. The depth to the groundwater level at the project site during project construction will vary relative to changes in seasons (i.e., rainfall), elevation, topography, and the proximity of drainageways, water bodies, and dewatering activities (e.g., wells). The depth to groundwater typically shallows during the rainy season as it collects in areas of low elevation and basinal topography (e.g., Laguna Del Rey and the Frog Pond) and near drainageways (e.g., Laguna Del Rey Creek). Areas of shallow perched groundwater (i.e., groundwater located above the elevation of static groundwater levels) may exist in the project area, including that which could be trapped within porous and permeable import materials (e.g., drain rock) that were used to backfill existing parallel or crossing utility excavations.

Based on groundwater elevations encountered in the project borings and CPTs, a groundwater table elevation of +74 feet was considered for design purposes.

Boring ⁽¹⁾	Ground Surface	Groundw Piezometr	ater Level or ic Elevation ⁽³⁾	Date Measured	Notes
g	Elevation (ft)	Depth BGS (feet)	Elevation (feet)	(mo/yr)	
B-4	84.5	31.0	53.5	8/2021	
B-5a	95.5	NE	NE	8/2021	refusal in fill on concrete & metal at depth of 2 ft
B-5b	95.5	26.0	69.5	8/2021	
CPT-1A	90.0	2.4	NE	2/2023	CPT rig shifted when refusal was encountered on suspected concrete and had to be abandoned
CPT-1B	91.5	17.6	74.0	2/2023	Suspected concrete encountered at ~10 feet, punched out of the way to continue advance
CPT-2	88.5	14.6	74.0	2/2023	

Table 5. Measured Groundwater Level in Project Borings

⁽¹⁾ See map of boring and CPT locations in Figure 1, and logs of borings and CPT results in Appendix B and Appendix D, respectively.

⁽²⁾ Ground surface elevations from Whitson (2020).

⁽³⁾ NE = not encountered.

5.5 Corrosion Evaluation

The corrosion potential was evaluated using the results of limited laboratory testing on samples obtained during the subsurface exploration. One soil sample was collected for corrosion testing during our subsurface investigation. The result of the corrosivity test is reported in Appendix C and summarized in Table 6. Based on the criteria provided in Caltrans corrosion guidelines (Caltrans, 2021a), the sample of material tested does not meet the definition of a corrosive environment.

Boring ID	Boring ID Elevation (feet)		рН	Chloride Content (ppm)	Sulfate Content (ppm)
B-4	74	1,908	7.1	29	417

Table 6. Soil Corrosion Test Summary

5.6 Seismic Information

5.6.1 Site Seismic Parameters

Based on the Vs30 map prepared by Branum et al. (2016), the average shear-wave velocity for the upper 30 meters (98 ft) of ground (V_{s30}) at the project site is approximately 1,150 ft/sec (Figure 6). However, Vs30 value at the project site determined using the project CPT data and All Soils method provided in PEER Guidelines (Wair et al., 2012) was approximately 720 ft/sec, which is significantly lower than the mapped Vs30 value. Therefore, Vs30 of 720 ft/sec, which is consistent with a seismic Site Class D (see Table 7) was used for the design purposes to be conservative.

Table 7. Seismic Site Classification

Seismic Site Class ⁽¹⁾	Average Shear Wave Velocity for the Upper 30 Meters of Ground (Vs ₃₀) ⁽¹⁾	Generic Description ⁽¹⁾					
А	> 5,000	Hard rock					
В	> 3,000 to 5,000	Medium hard rock					
BC	> 2,100 to 3,000	Soft rock					
С	> 1,450 to 2,100	Very dense sand or hard clay					
CD	> 1,000 to 1,450	Dense sand or very stiff clay					
D	> 700 to 1,000	Medium dense sand or stiff clay					
DE	> 500 to 700	Loose sand or medium stiff clay					
E	> 500 ft/s	Very loose sand or soft clay					
⁽¹⁾ Modified from ASCE 7-22 Table 20.2.1.							

5.6.2 Ground Motion Parameters

Design ground motion parameters for the project are provided in Table 8 and Appendix E. These parameters were determined based on Caltrans' Design Acceleration Response Spectrum Module (version 3.0.2) (Caltrans, 2020a).

Project Component ID		Site Parameter	S	Design Ground Motion Parameters ⁽¹⁾ (Return Period = 975 years)		
	Location		Shear-Wave	Horizontal	Mean	Mean Site-to-
	Latitude (degrees)	Longitude (degrees)	Velocity Vs ₃₀ (m/sec)	Peak Ground Acceleration	Earthquake Moment Magnitude	Fault Source Distance (km)
STA 201+75	36.5937	-121.8362	360	0.49g	6.75	26.4

⁽¹⁾ Based on Caltrans web tool ARS Online (Version 3.0.2): https://arsonline.dot.ca.gov/.

5.6.3 Fault Rupture

Major plate boundary faults and lesser-known smaller faults near the project area are shown in the U.S. Geological Survey's Fact Sheet 2016-3020 provided in Figure 7. The nearest Alquist-Priolo Earthquake Fault Zone to the project area is for the San Andreas Fault, located approximately 25 miles to the north and east (see Figure 7 and CGS 2018). Figure 7 shows that the Reliz Fault (Fault No. 27 in Figure 7) is located several miles to the northwest of the project area, and that the Monterey Bay-Tularcitos Fault (Fault No. 29 in Figure 7) is located 1½ miles southwest of the project area. Neither the Reliz Fault nor the Monterey Bay-Tularcitos Fault are associated with an Alquist-Priolo Earthquake Fault Zone (CGS 2018).

As is shown in Figure 2.1, the Chupines Fault and the Seaside Fault have been mapped as concealed faults (i.e., fault traces that have been covered by younger unfaulted material, and therefore not presently visible at the ground surface) that have been inferred by some mappers (e.g., Hartwell et. al., 2016) to occur between the Reliz Fault and the Monterey Bay-Tularcitos Fault, and near the project area. The inferred location of the Seaside Fault is mapped in Figure 2.1 to be more than 1,000 feet northeast of the project area. The inferred location of the Chupines Fault is mapped in Figure 2.1 to be less than 1,000 feet from the project area. However, the location of the Chupines Fault, if it indeed exists near the project area, is concealed by manmade fills and alluvium.

Clark et al. (2000) argues for possible Holocene activity of the western offshore extension of the Chupines Fault in Monterey Bay based on (1) assertions that the Chupines Fault cuts Holocene deposits and the sea floor in the bay (McCulloch and Greene, 1989), and (2) the location of historic offshore earthquake epicenters in proximity of the general fault trend (e.g., see Figure 8). However, the U.S. Geological Survey identifies the Chupines Fault only as Quaternary; one with displacement within the last 1.6 million years (Bryant 2001). The California Geological Survey and the State of California does not classify the Chupines Fault as Holocene-active, and the Chupines Fault is not associated with an Alquist-Priolo Earthquake Fault Zone (see Bryant 1985, and CGS 2018).

5.6.4 Liquefaction

Liquefaction develops when cyclically induced ground stresses increase pore water pressure within the soil to sufficient levels that the soil loses shear strength and liquefies. Construction vibrations and ground shaking can cause liquefaction. Liquefied soils densify (settle) as pore pressures decrease to static levels and soil particles reconfigure into a denser packing. The extent or degree of liquefaction depends on (1) the distribution of cohesionless sediments (gravels, sands, and very low-plasticity silts) within the deposit, (2) a sufficiently high-water table for the sediments to be saturated, and (3) age of the deposits since the sediments become more resistant with age (Idriss, 2008). The most susceptible soils of the project area are fills, and alluvial and marine deposits.

A liquefaction potential map of the project area from Dupre (1990) is provided in Figure 9. The area of high susceptibility liquefaction appears to coincide with the area mapped as Rindge muck soil, as described in Section 5.2 and in Figure 3. Dupre (1990) map shows that the bridge is located an area mapped as having high liquefaction susceptibility. No liquefaction-related ground effects from historical earthquakes have been mapped specifically in the project area; however, ground settlement from liquefaction during earthquakes in the region has been mapped to have occurred about 1.5 miles northwest in Laguna Del Rey (Youd and Hoose, 1978; Tinsley et al., 1990).

The borings drilled in the vicinity of the project area only provide subsurface information to 40 feet below ground surface. In order to perform a detailed analysis to determine liquefaction potential in the project area, CPTs were pushed to refusal (see final depths in Table 2). A numerical analysis of liquefaction triggering was performed with data from the CPT using CLiq v.3.0 (GEOLOGISMIKI, 2007). Earthquake magnitude, peak ground acceleration at the project site, and assumed groundwater depth below the surface from recent CPT data during an earthquake are summarized in Table 9.

Exploration ⁽¹⁾	Assumed Groundwater Depth during Earthquake (ft)	Earthquake Magnitude (M)	Peak Ground Acceleration, PGA	
CPT-1	17.5	0.04	0.5 a	
CPT-2	14.5	6.81	0.5g	

Table 9. Summary of Liquefaction Input Parameters

⁽¹⁾ See Table 2 for summary of CPT.

Based on liquefaction evaluation guidelines provided in Caltrans Geotechnical Manual (Caltrans, 2020c), the procedure from Youd and Idriss (2001) was used for liquefaction analysis. The data obtained during the CPTs were correlated with lab testing results from project borings for fines content and relative density (SPT "N" blow counts) measurements. The CPT-based analysis results are provided in Appendix F and summarized in Table 10. The factor of safety against liquefaction is plotted in Figures 5.. The CPT based analysis results of both CPTs determined that potentially 5 inches of settlement could occur during a 6.81 magnitude earthquake.

СРТ	Approximated Liquefaction Elevation (feet)	Layer Thickness (feet)	Estimated Seismic-induced Settlement (inches)
	74 to 72	2	
CPT-1B	67.5 to 65.5	2	5.40
	60 to 51	9	5.13
	39.5 to 28.5	11	
	74 to 70.5	3.5	
CPT-2	60.5 to 51.5	9	4.05
	35.5 to 32.5	3	4.95
	28.5 to 25.5	3	

Table 10. Summary of CPT-based analysis results

5.6.5 Liquefaction-Induced Lateral Spreading

Lateral spreading is caused by the accumulation of incremental displacements that develop within liquefied soil under cyclic loading. Depending on the number and amplitude of stress pulses, lateral spreading can produce displacements that range from a few inches to tens of feet. As indicated in Section 5.6.4, no liquefaction-related ground effects from historical earthquakes have been mapped in the project area. The groundwater elevation at the project site during the modeled earthquake used for the liquefaction analysis is assumed to be the elevation encountered in the recent CPTs at approximately El. +74 feet, which is below the bottom of the free face elevation at the retaining wall location. Multiple liquefiable soil layers a few feet thick were encountered within a depth of 1.2H from the bottom of the wall toe (where H is the height of the retaining wall), and therefore multiple failure surfaces were considered within this depth range, per Figure 2 in Caltrans Memo to Designers (MTD) 20-15 (2017).

In this case, the top of the slope is assumed to be at +103 feet and the toe of the slope is assumed to be at +80 feet as illustrated in Figure 5. As explained above, failure surfaces within liquifiable layers were considered down to El. +52.4 (1.2H below the bottom of the wall toe). Based on the height of the wall and Caltrans (2020b), the potential for lateral spreading displacement at the retaining wall location can be significant. According to Caltrans MTD 20-15, pseudo-static slope stability analysis was performed using reduced strength parameters for liquefiable layers provided in Table 11. Residual shear strength (S_r) values used in the analysis for liquefiable layers were calculated from the results of the CPT investigation following Equation 82 from Boulanger and Idriss (2014). S_r values were also calculated following Equation 1 in Caltrans MTD 20-15 for the SPT-based investigation but were slightly higher than the CPT-based approach. As such, the CPT-based S_r values were used out of conservatism. The search limits for the critical failure surface were limited to extend laterally no more a distance of 4H from the back of the retaining wall, and vertically to no more than 1.2H depth from the bottom of the wall toe, per Figure 2 in Caltrans MTD 20-15.

		Unit	Shear Strength Parameters			
Elevation (feet)	Soil Type	Weight, γ (pcf)	Friction Angle, Φ (degrees)	Cohesion, c (psf); Undrained Shear Strength, Su (psf); Residual Shear Strength, Sr (psf)		
100.0–74.0	Sand	100	30	c = 0		
74 0-70 5	Sand (Liquefied Laver)	105	$\Phi_{\rm u} = 0$	Sr = 232		
				Sr = 59		
70.5–67.5	Clay	97	$\Phi_u = 0$	S _u = 650		
				Sr = 331		
67.5–65.5	Sand (Liquefied Layer)	115	$\Phi_u = 0$	Sr = 217		
				Sr = 103		
65.5–60.5	Clay	105	$\Phi_u = 0$	S _u = 500		
				Sr = 475		
60.5–51.5	Sand (Liquefied Layer)	115	$\Phi_u = 0$	S _r = 336		
				S _r = 196		
51.5–39.5	Clay	95	$\Phi_u = 0$	S _u = 400		
				Sr = 827		
39.5–28.5	Sand (Liquefied Layer)	115	$\Phi_u = 0$	S _r = 635		
				S _r = 444		
Below 28.5	Sand	125	35	c = 0		

Table 11. Soil Parameters for Pseudo-Static Slope Stability Analysis

The methodology followed the procedure outlined in the example problem in the Caltrans Geotechnical Design Manual (Caltrans, 2020b). Pseudo-static slope stability analyses were performed with the software program Slide 2 (Rocscience, 2022) using General Limit Equilibrium (GLE) / Morganstern-Price (MP) Method and Spencer Method. The first step was running a pseudo-static slope stability analysis with no horizontal seismic coefficient applied. Results showed the Factor of Safety of greater than 1.0, meaning that down to a depth of 1.2H below the wall toe the slope is not susceptible to liquefaction-induced flow failure. The next step is identifying whether any liquefaction-induced slope failure is likely under seismic loading. This consisted of running a pseudo-static slope stability analysis with a horizontal seismic coefficient (k_h) of 0.25g, half of the design peak horizontal ground motion per guidelines provided in Caltrans Geotechnical Manual for Geotechnical Seismic Design for Earth Retaining Systems (Caltrans, 2021b). Results showed the Factor of Safety was less than 1.0 and a slope failure is likely under seismic loading, therefore further analysis was performed as follows. The results for the stability analyses from Slide 2 program are summarized in Table 12 and presented in Appendix G.

Scenario	Method	Failure Type	Liquefiable Layer Elevation (ft)	Support Resistance, R _{tot} (kips)	Factor of Safety	Required Factor of Safety
Liquefied Condition	GLE/MP	Block			1.07	
with k _h = 0	Spencer	Failure	72.25	0	1.14	
Liquefied Condition	GLE/MP	Block		_	1.14	
with k _h = 0	Spencer	Failure	66.5	0	1.18	
Liquefied Condition	GLE/MP	Block			1.14	
with k _h = 0	Spencer	Failure	56	0	1.11	1.0
Liquefied Condition	GLE/MP	Block			0.91	1.0
with k _h = 0.25g	Spencer	Failure	72.25	0	0.99	
Liquefied Condition	GLE/MP	Block			0.92	
with $k_h = 0.25g$	Spencer	Failure	66.5	0	0.99	
Liquefied Condition	GLE/MP	Block			1.03	
with k _h = 0.25g	Spencer	Failure	56	56 0	1.02	

Furthering this analysis, a pseudo-static slope stability analysis was performed to identify the yield acceleration (the horizontal seismic coefficient which produces a Factor of Safety equal to 1.0). Yield acceleration results are summarized in Table 13 and provided in Appendix G. The lowest yield acceleration was found to occur with a failure surface within the second liquefiable soil layer (between El. +74 feet and +70.5 feet, with the failure plane analyzed at +72.25 feet). Therefore, a failure plane at El. +72.25 feet within this liquefiable layer and the associated yield acceleration were used for soldier pile design against lateral spreading.

Table	13.	Yield	Acce	leration
-------	-----	-------	------	----------

Scenario	Method	Failure Type	Liquefiable Layer Elevation (ft)	Support Resistance, R _{tot} (kips)	Yield Acceleration (k _y)
Liquefied Condition k _y	GLE/MP	Block Failure	72.25		0.03
	Spencer			0	0.08
Liquefied Condition	GLE/MP	Block Failure			0.05
, ky	Spencer		66.5	0	0.07

6.0 Geotechnical Recommendations

Recommendations provided herein are intended for design and construction of Retaining Wall No. 1 in a safe and economic manner, and to ensure the completed project's useful long-term function. Contractors constructing the project are responsible for:

- Reviewing the project GDR and this foundation report
- Supplementing findings of the project GDR with their own investigations
- Interpreting findings from the project GDR and their own investigations
- Selecting and implementing appropriate construction means, methods, and monitoring

Contractors should be required to successfully construct the project design in a safe manner and such that no existing structure, improvement, or utility becomes damaged during or because of the work required to construct the project. Retaining Wall No. 1 will be constructed to support native and backfill soil that mainly consists of very loose to medium dense sandy materials. Initially, a hollow bar soil nail wall was evaluated as an earth retaining system for Retaining Wall No. 1. However, Caltrans design guide commentary (email from Cornerstone dated June 22, 2022) does not favor the use of hollow bar soil nails for retaining wall support. Therefore, the design team elected to use a Caltrans-preferred soldier pile and lagging system for support of Retaining Wall No. 1.

The General Plan (Cornerstone, 2023) shows the soldier piles as W24 beams embedded in a 36-inchdiameter drilled hole that is backfilled with concrete. The horizontal span (center to center) between soldier piles varies from 5.8 to 8.2 feet, with a maximum height above finished grade of approximately 10 feet. Timber lagging is shown between the soldier piles of Retaining Wall No.1 on the General Plan. The total length of wall is approximately 136.3 feet, with Station 9+79 of the wall being at the west side of the wall (i.e., the connecting point between SR 218 Undercrossing Bridge and Retaining Wall No. 1). Finished grade at the wall is shown to be backfilled on the downslope side of the retaining wall from the bridge abutment to approximately 90 feet up station, with a maximum slope of 1.5H:1.0V per the 95% submittal Civil Plans (GHD, 2022). Cut and fill quantities appear to be minimal above Retaining Wall No. 1, based on the existing and final topographic contours of the 95% submittal Civil Plans (GHD, 2022). Retaining Wall No. 2 is to be constructed above Retaining Wall No.1, with the center of the wall being approximately 11 feet from the edge of Retaining Wall No. 1. The recommendations provided herein are based on boring B-5b and extrapolation of the CPT data (see Figure 1).

6.1 Ground Material Properties, Models, and Loading

Ground material parameters were determined based on the available geologic data, in situ and laboratory test data, and the data from CPTs. Foundation material parameters are shown in Table 14. The water table is assumed to be at +74 feet elevation.

Elevation (ft)	Soil Type	Unit Weight γ (pcf)	Friction Angle φ' (degrees)	Cohesion su (psf)	Active Earth Pressure Coefficient, ka ⁽¹⁾	Passive Earth Pressure Coefficient, kp ^(1, 2)	Interface Friction Angle, δ	Arching Factor ⁽³⁾
85.0–70.5	Sand	100	30	0	0.30	4.85	15	3
70.5–60.5	Clay	100	0	500	0.37	3.43	12	1
60.5–51.5	Sand	115	30	0	0.30	4.85	15	3
51.5–39.5	Clay	95	0	400	0.45	2.59	0	1
below 39.5	Sand	125	35	0	0.25	6.74	17	3

Fable 14. Foundation	Material	Parameters	for	Design
-----------------------------	----------	------------	-----	--------

⁽¹⁾ Earth pressure coefficients are calculated per Section 3-11-5 of AASHTO (2017)

⁽²⁾ The passive pressure should not exceed 2,000 psf.

⁽³⁾ Arching factor of 3 for Sand under the assumption that the pile spacing is less than 3 times pile diameter.

Table 15 presents the material parameters for the backfill material, with the material assumed to be free draining with the water table below the retained material. Although the amount of fill to be placed above Retaining Wall No. 1 is minimal, the backfill above the wall has been assumed to significantly increase the average unit weight of the retained material.

Table 15. Preliminary Retained Material Parameters for Design

Material Type	Unit Weight, γ (pcf)	Friction Angle, φ′ (degrees)	Cohesion, su (psf)	Active Earth Pressure Coefficient, k _a	Interface Friction Angle, δ
Sand	120	30	0	0.3	15.0

Active and passive pressure coefficients for the retained and foundation materials were calculated as specified in the AASHTO LRFD Bridge Design Specifications (AASHTO, 2017). The interface friction angle (δ) between the sands and the retaining wall lagging and soldier piles is assumed to be 50 percent of the soil friction angle. Earth pressures for clay materials were calculated with the assumption that stiff and soft clay has a friction angle of 25 and 20 degrees, respectively, with no cohesion for conservatism. Lateral earth pressures for assessing local stability of Retaining Wall No. 1 are shown in Figure 10. The active and passive pressures shown are from AASHTO (2017), which are taken from Broms (1964 a,b). Surcharge loading from Retaining Wall No. 2 above Retaining Wall No. 1 can be conservatively treated as an infinite line load. In determining passive earth pressure, adjusted pile width should be used to take soil arching effect between soldier piles into account. The adjusted pile width is calculated as the product of the pile width (b; see Figure 10) and the arching factor provided Table 14 (f; see Figure 10).

Dynamic earth pressure from seismic shaking (Pe) is 30H, expressed as pounds per square foot, and should be applied as a triangular distribution over a height of H as illustrated in Figure 10. The resultant should be applied at a distance of 0.3H from the bottom of the retained soil layer (see Figure 10). In addition to the static and dynamic earth pressure provided above, horizontal inertial force due to seismic

loading of the wall mass $(k_h W_w)$ and dynamic forces caused by permanent surcharge loads located above the wall $(k_h W_{surcharge})$ should also be considered for seismic design of the retaining wall. Seismic horizontal acceleration coefficient (k_h) value of 0.28g can be used.

6.2 Retaining Wall No. 1 Design Considerations

Due to the minimal quantities of cut and fill expected for the retained material, settlement of the retained and foundation material will be minimal. Drag loads imparted on the soldier piles due to the fill materials will be negligible.

6.2.1 Liquefaction-Induced Settlement and Downdrag

Tip elevations for retaining wall soldier piles are provided in the Foundation Plan prepared by Cornerstone (2023). Tip elevations determined based on lateral earth pressure load were within liquefiable soil layer. Therefore, soldier piles were extended below the liquefiable layer with minimum one foot embedment into the non-liquefiable layer. Estimated liquefaction-induced settlement and downdrag loads for each pile are summarized in Table 16.

Downdrag is the phenomenon in which the pile foundation is subjected to negative/downward skin friction as a result of downward movement/settlement of the ground surrounding the pile. Post-liquefaction residual shear strengths using methods by Boulanger and Idriss (2014) were used for the liquefiable soils, and the full shear strengths were used for the nonliquefiable soil layers to calculate the downdrag loading in accordance with Caltrans liquefaction-induced downdrag manual (Caltrans, 2020d). Axial pile resistance calculated using CPT-based procedures (Eslami and Fellenius Method) presented in the FHWA Design and Construction of Driven Piles Manual (FHWA, 2016) is approximately 275 kips which is greater than the estimated downdrag load.

Since the pile tip elevation is located above the lowest liquefaction zone, the piles are anticipated to have approximately 2.5 inches of settlement due to the lowest liquefaction zone between Elevation 39.5 feet and 28.5 feet, which is acceptable according to the structural designer.

Pile Tip Elevation (feet)	Liquefaction Elevation (feet)	Estimated Liquefaction- induced Settlement ⁽¹⁾ (inches)	Downdrag Zone Bottom Elevation ⁽²⁾ (feet)	Estimated Downdrag Load ⁽³⁾ (kips/pile)
50	Elev. 74.0 to 70.5 Elev. 67.5 to 65.5 Elev. 59.5 to 51.5 Elev. 39.5 to 28.5	2.5	Elev. 52.5	175

Table 16. Liquefaction Potential at Retaining Wall No. 1

⁽¹⁾ Estimated liquefaction-induced settlement of pile.

⁽²⁾ Estimated in accordance with Caltrans liquefaction-induced downdrag manual (Caltrans, 2020d).

⁽³⁾ Downdrag loads calculated for 36-inch drilled hole for the soldier piles

6.2.2 Liquefaction-Induced Lateral Spreading Mitigation

Figure 11 represents the interactive curve that shows the resisting force from soldier piles prepared by Cornerstone and the displacement response of the sliding mass calculated by MJA for El. +72.25 feet failure plane. The liquefaction-induced lateral spreading displacement was estimated per Caltrans MTD

20-15 (Caltrans, 2017) using the method of Bray and Tavasarou (2007) for Newmark's rigid body type sliding displacement with the parameters provided below:

(k _h) _y	-	the coefficient of the yield accelerations determined from Slide2
HPGA	-	horizontal peak ground acceleration for the design ground motion $(0.5g)$
M_{w}	-	the moment magnitude of the associated design earthquake (6.81)

Yield acceleration used to estimate the displacement was determined using GLE / Morganstern-Price Method since it has more conservative result compared to Spencer Method (Table 13).

Based on the interactive curve presented in Figure 11 which takes into account the constructed soldier pile retaining wall, there will be approximately 17 inches of displacement along elevation +72.25 feet failure plane. Retaining wall No.1 located northeast of the bridge is constructed to support the pedestrian and bike trail across the existing slope. According to the pseudo-static slope stability analysis performed on the existing slope prior to the retaining wall construction (see Appendix H), there is a potential for liquefaction-induced lateral spreading of the existing slope with an estimated lateral displacement of 24 inches along elevation +72.25 feet failure plane. Based on engineering judgement and discussions with Caltrans, relative ground displacement of 17 inches under the liquefaction condition appears reasonable for the retaining wall across existing slope that is predisposed to preexisting liquefaction-induced lateral spreading.

6.2.3 Global Stability Analysis

Global stability analysis was performed to determine the minimum pile embedment depth and/or pile tip elevations. The soil parameters listed in Table 14 and Table 15 were used for the analysis. The maximum height of the wall is anticipated to be approximately 10 feet. Slide2 (Rocscience, 2022) was used to evaluate the embedment depth required for global stability of the slope. The global stability analyses were performed for both circular and block failure analysis using Bishop Simplified Method, Janbu Simplified Method, and Spencer Method. Slide2 outputs for the stability analyses are provided in Appendix I. Based on the results, the proposed retaining walls tip elevation provided in General Plan prepared by Cornerstone (2023) meet the minimum factor of safety of 1.5. The results of the global stability analysis are summarized in Table 17.

Wall Type	Method	Failure Type	Factor of Safety	Required Minimum Factor of Safety		
	Bishop simplified		2.14	1.5		
	Janbu simplified	Circular	1.97			
Soldor pilo wall	Spencer		2.16			
	Bishop simplified		1.57			
	Janbu simplified	Block	1.53			
	Spencer		1.70			

Table 17. S	Stability Ana	lysis Results
-------------	---------------	---------------

6.3 Retaining Wall No. 1 Construction Considerations

Lift heights for the construction of Retaining Wall No. 1 should be determined by the Contractor's means and methods for maintaining a stable slope. Gaps between lagging and the retained material should be backpacked to ensure intimate contact. Lagging should be spaced adequately to prevent the fallout of retained material while still allowing adequate drainage between vertically adjacent lagging boards. The drainage system used should be adequate to prevent the buildup of hydrostatic forces against the retaining wall.

Weak sedimentary rock may be encountered during installation of the soldier piles, which is designated as the Monterey Formation (see Section 5.0). Backfill used in the retained material and at the base of the wall overlaying the foundation material should conform to the earthwork requirements specified in the GDR (MJA, 2023a). Overhead utilities are also present at the site on the north side of SR 218 above the road shoulder.

Because of the inability to obtain subsurface geotechnical information, the assessment for liquefactioninduced lateral spreading potential was performed by conservatively assuming that the liquefiable layer encountered in the project borings and CPTs extend laterally under the retaining wall and under the existing slope behind private properties. Additional field explorations (i.e., borings or CPTs) should be performed prior to construction to confirm or refute the reasonableness of this conservative assumption and further inform the liquefaction-induced lateral spreading potential.

6.4 Notes for Specifications

Difficult pile installation is not expected based on our current investigation data. Subsurface conditions on along the retaining wall used for soldier pile design were projected from the data obtained from our investigations, and there is a potential for encountering Monterey Formation at a shallower depth along the retaining wall bridge. According to Monterey Formation interpreted to have been encountered in our project boring B-5b, it is classified as very stiff soil or soft rock hardness, which is not anticipated to result in difficult driving conditions. However, project boring B-5b was terminated at Elev. +55.5 feet, and because ground conditions from the CPTs and boring B-4 on the south side of SR 218 were extrapolated north across highway and along the retaining wall, the contractor should perform confirming investigations along the retaining wall to confirm the in-situ ground conditions.

6.5 Notes for Construction

We recommend that a geotechnical engineer perform inspections and testing during the following stages of construction:

- Placement of compacted backfill
- Installation of soldier piles
- When any unusual subsurface conditions are encountered

7.0 Limitations

This report has been prepared for the exclusive use of GHD, and TAMC for the planned Retaining Wall No. 1 of the Canyon Del Rey/SR218 Segment of Fort Ord Regional Trail & Greenway (FORTAG) project in Del Rey Oaks California, as described herein. Project details referred to herein are from information provided in the FORTAG Undercrossing at SR 218 drawings prepared by Cornerstone Structural Engineering Group (2023) and 95% submittal drawings prepared by GHD (2022). We understand that there will be a planned Retaining Wall No. 2 for the project; however, performing a geotechnical investigation and providing related design recommendations for Retaining Wall No. 2 are not part of our scope of work.

Subsurface conditions at and between locations of subsurface exploration for the project (borings and CPTs) may vary over time from those encountered and logged in the explorations as provided herein (see Appendices B and D). Subsurface conditions along the retaining wall and under the existing slope were projected from data obtained from project borings and CPTs. If the ground conditions that are exposed during construction differ from those indicated in logs of project explorations as provided herein, then McMillen Jacobs Associates is to be retained to evaluate the exposed ground conditions and to provide written confirmation or modifications to the recommendations provided in this report. Studies of the absence, existence, and effects of artificial contamination (e.g., from leaking underground storage tanks) and natural environmental conditions (e.g., from naturally occurring asbestos) on project construction, if any, are outside of our expertise and are not part of our scope of services. Any reference in this report to related data is solely provided as a value-added service. Additionally, the corrosion recommendation provided herein is from limited data, and therefore, a soil corrosion engineer should be retained to evaluate soil corrosivity relative to design of the project.

The geotechnical recommendations provided in this report have been formulated in a manner consistent with the level of care and skill ordinarily exercised by members of the geotechnical profession currently practicing in the area under similar project constraints for this type of project.

8.0 References

American Association of State and Highway Transportation Officials (AASHTO). 2017. *LRFD Bridge Design Specifications*. 8th Edition.

American Society of Civil Engineers (ASCE). 1976. Subsurface Investigation for Design and Construction of Foundations of Buildings. ASCE Manuals and Reports on Engineering Practice No. 56 (MOP 56).

American Society of Civil Engineers (ASCE). 2022. Minimum design loads for buildings and other structures. ASCE 7-22.

ASTM International:

ASTM D1586 – Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils.

ASTM D2166 - Standard Test Method for Unconfined Compressive Strength of Cohesive Soil.

ASTM D2487 – Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).

ASTM D2488 – Standard Practice for Description and Identification of Soils (Visual-Manual Procedures).

ASTM D3080M – Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions.

ASTM D5778 – Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils.

Boulanger, R. W. and Idriss, I. M. 2014. CPT-Based Liquefaction Triggering Procedure. Center for Geotechnical Modeling, Report No. UCD/CGM-14/0X. Department of Civil and Environmental Engineering, University of California, Davis.

Branum, D., R. Chen, M. Petersen, and C. Wills. 2016 (rev.). Earthquake Shaking Potential for California, California Geological Survey, Map Sheet 48 (Revised 2016).

Bray, J.D., and Travasarou, T. 2007. Simplified Procedure for Estimating Earthquake Induced Deviatoric Slope Displacements, Journal of Geotechnical and Geoenvironmental Engineering.

Broms, B.B. 1964a. Lateral resistance of piles in cohesive soil. *ASCE Journal for Soil Mechanics and Foundation Engineering*, 90(2): 27–63. Reston, VA: American Society of Civil Engineers.

Broms, B.B. 1964b. Lateral resistance of piles in cohesive soil. *ASCE Journal for Soil Mechanics and Foundation Engineering*, 90(3): 123–156. Reston, VA: American Society of Civil Engineers.

Bryant, W.A. 1985. Faults in the Southern Monterey Bay Area, Monterey County; California Division of Mines and Geology (now the California Geological Survey) Fault Evaluation Report FER-167.

Bryant, W.A. (compiler). 2001. Fault number 145a, Chupines fault zone, Del Rey Oaks section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, <u>https://earthquakes.usgs.gov/hazards/faults/qfaults</u>, accessed 11/04/2021.

California Department of Transportation (Caltrans). 2017. Lateral Spreading Analysis for New and Existing Bridges, Memo to Designers 20-15, dated May 2017.

California Department of Transportation (Caltrans). 2020a. ARS Onllne, Version v3.0, Accessed at <u>https://arsonline.dot.ca.gov/</u>.

California Department of Transportation (Caltrans). 2020b. Lateral Spreading Analysis Example, Caltrans Geotechnical Manual, dated January 2020.

California Department of Transportation (Caltrans). 2020c. Liquefaction Evaluation, Caltrans Geotechnical Manual, dated January 2020.

California Department of Transportation (Caltrans). 2020d. Liquefaction-Induced Downdrag, Caltrans Geotechnical Manual, dated January 2020.

California Department of Transportation (Caltrans). 2021a. Corrosion Guidelines, Version 3.2, Division of Engineering Services, Materials Engineering and Testing Services, Corrosion Branch, dated May 2021.

California Department of Transportation (Caltrans). 2021b. Geotechnical Seismic Design of Earth Retaining Systems, Caltrans Geotechnical Manual, dated January 2021.

California Geological Survey (CGS). 2018. Earthquake Fault Zones, A Guide for Government Agencies, Property Owners/Developers, and Geoscience Practitioners for Assessing Fault Rupture Hazards in California; Special Publication 42.

Clark, J.C., Dupre, W.R., and L.I. Rosenberg. 1997. Geologic Map of the Monterey and Seaside 7.5minute Quadrangles, Monterey County, California: U.S. Geological Survey Open-File Report 97-30. (don't include since shows landslide)

Clark, J.C., Brabb, E.E., and L.I. Rosenberg. 2000. Geologic map of the Spreckles 7.5-minute quadrangle, Monterey County, California: U.S. Geological Survey Miscellaneous Field Study MF-2349.

Cornerstone Structural Engineering Group (Cornerstone). 2023. Drawing for FORTAG Undercrossing at SR 218, Transportation Agency for Monterey County, Dated April 2023.

Dibblee, T.W. Jr., and J.A. Minch. 2007. Geologic Map of the Monterey and Seaside Quadrangles, Monterey County, California, Dibblee Geology Center Map #DF-346.

Dibblee, T.W. Jr., J.C. Clark., H.G. Greene., and O.E. Bowen, Jr. 1974. Preliminary Geologic Map of the Monterey and Seaside 7.5-minute Quadrangles, Monterey County, California, U.S. Geological Survey.

Dupre, W.R. 1990, Maps showing geology and liquefaction susceptibility of Quaternary deposits in the Monterey, Seaside, Spreckels and Carmel Valley Quadrangles, Monterey County, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-2096.

Federal Highway Administration (FHWA). 2016. Design and Construction of Driven Pile Foundations – Volume I, Publication No. FHWA-NHI-16-009. September 2016, 559 pp.

GEOLOGISMIKI. 2007. CLiq - CPT soil liquefaction software, version 3.0. Serres, Greece.

GHD, 2022, 95% submittal drawings for FORTAG Trail Project, Transportation Agency for Monterey County.

Hart, E.H., and W.A. Bryant. 1997. Fault-Rupture Hazard Zones in California. California Division of Mines and Geology Special Publication 42.

Hartwell, S.R., S.Y. Johnson., C.W. Davenport., and J.T. Watt. 2016. Offshore and Onshore Geology and Geomorphology, Offshore of Monterey Map Area, California, U.S. Geological Survey, Open-File Report 2016-1110, Sheet 10 of 10.

Heuer, R. 1974. Important ground parameters in soft ground tunneling. In *Proceedings of Subsurface Explorations for Underground Excavation and Heavy Construction*, ASCE Specialty Conference, 41–55. Henniker, NH: ASCE.

Idriss, I. M. and Boulanger, R. W. 2008. Soil Liquefaction during Earthquakes. Earthquake Engineering Research Institute, Oakland, California.

McCulloch, D.S., and Green, H.G. 1989. Geologic map of the central California continental margin, in Greene, H.G., and Kennedy, M.P., eds., Geology of the central California continental margin: California Division of Mines and Geology California Continental Margin Geologic Map Series, Map 5A, scale 1:250,000.

McMillen Jacobs Associates (MJA). 2023a. Fort Ord Regional Trail & Greenway SR 218 Undercrossing Bridge and Retaining Wall No. 1 – Final Geotechnical Design Report. Prepared for Transportation Agency of Monterey County.

McMillen Jacobs Associates (MJA). 2023b. Fort Ord Regional Trail & Greenway SR 218 Undercrossing Bridge – Final Foundation Report for Bridge. Prepared for Transportation Agency of Monterey County.

McMillen Jacobs Associates (MJA). 2021a. Pre-Type Structure Selection Fact Sheet for SR 218 Undercrossing; Fort Ord Regional Trail & Greenway Canyon Del Rey/SR 218 Segment.

McMillen Jacobs Associates (MJA). 2021b. Draft Geotechnical Data Report, Fort Ord Regional Trail & Greenway Canyon Del Rey/SR 218 Segment.

Robertson, P.K., R.G. Campanella, D. Gillespie, and J. Greig. 1986. Use of piezometer cone data. In *Proceedings of InSitu 86, ASCE Specialty Conference*, Blacksburg, Virginia.

Robertson, P.K. 1990. Soil classification using the cone penetration test. *Canadian Geotechnical Journal*, 27: 151–158. DOI: 10.1139/T90-014.

Robertson, P.K. and C.E. Wride. 1998. Evaluating cyclic liquefaction potential using the cone penetration test. *Canadian Geotechnical Journal*, 35: 442–459.

Robertson, P.K. 2009. Interpretation of cone penetration tests – a unified approach. *Canadian Geotechnical Journal*, 46: 1337–1355. DOI: 10.1139/T09-065.

Robertson, P.K. 2010. Soil behaviour type from the CPT: An Update. In *Proceedings of 2nd International Symposium on Cone Penetration Testing, Huntington Beach*, 2: 575–583.

Rocscience. 2022. Slide2 – 2D Limit Equilibrium Analysis for Slopes, version 9.025.

Sowers, George F. 1979. *Introductory Soil Mechanics and Foundations: Geotechnical Engineering*, 4th ed. New York: Macmillan Publishing Co., p 83, Table 2-10.

Terzaghi, K., and R.B. Peck. 1967. *Soil Mechanics in Engineering Practice*, Second Edition. New York, NY: John Wiley and Sons.

Tinsley, J.C. III, Egan, J.A., Kayen, R.E., Bennett, M.J., Kropp, A., and T.L. Holzer. 1998. Appendix: Maps and Descriptions of Liquefaction and Associated Effects, in T.L. Holzer, ed., The Loma Prieta, California, Earthquake of October 17, 1989-Liquefaction; U.S. Geological Survey Professional Paper 1551-B.

U.S. Geological Survey (USGS). 2016. Fact Sheet 2016-3020. https://pubs.usgs.gov/fs/2016/3020/fs20163020.pdf.

U.S. Soil/Natural Resources Conservation Service (NRCS). 2020. Web Soil Survey, U.S. Department of Agriculture. <u>http://websoilsurvey.sc.egov.usda.gov</u>.

Whitson Engineers (Whitson). 2020. Topographic Survey, State Route 218, Transportation Agency of Monterey County, Dated: January 2020.

Youd, T.L., and I.M. Idriss, 2001, Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. *Journal of Geotechnical and Geoenvironmental Engineering*, 127(4), 297–313.

Youd, T.L., and S.N. Hoose. 1978. Historic ground failures in northern California triggered by earthquakes. U.S. Geological Survey Professional Paper 993.

Figures

Qmt

MAP UNITS

(concealed and inferred location)

af Artificial fill and Artificial fill in stream channels (late Holocene) - Well-compacted sand and silt to poorly compacted sediment high in organic content and with rubble debris. Qal Alluvial deposits, undivided (Holocene) - Unconsolidated gravel, sand, silt, and clay adjacent to stream channels		_
Qyf Alluvial fan deposits (Holocene) - Unconsolidated, gravel, sand, and silt Qmt Marine-terrace deposits, undivided (Pleistocene) - Semiconsolidated sand and gravel; queried where uncertain		1
Qod Older dune-sand deposits (Pleistocene) - Very well-sorted, fine to medium sand; queried where uncertain Tm Monterey Formation (Miocene) - Pale-orange to white, porcelaneous shale interbedded with chert, mudstone, calcareous claystone, siltstone, and sandstone; some diatomaceous and tuffaceous/bentonitic volcanic ash		CMILLEN ACOBS SOCIATES
Map and descriptions modified from Hartwell et al., (2016)	File No. 6231.0	April 2023

LEGEND

Tm

Planned Bridge

MAP UNITS

Surficial Sediments (Holocene)

Qg - Stream channel gravel and sand Qa - Alluvial gravel, sand, silt and clay

Older Surficial Sediments (Pleistocene)

Qoa - Older alluvium and terrace gravel and sand Qos - Older stabilized dune and drift sand Qm - Marine terrace sand and gravel

na

Aromas Sand (Pleistocene)

Non-marine, wind-deposited, yellowish-brown to reddish brown fine sand; in places weakly indurated.

Jar

Monterey Formation (middle to late Miocene)

Marine biogenic and clastic deposits; including white-weathering siliceous shale, and white, soft and commonly silty diatomite and bentonite (volcanic ash fall tuff).

April 2023

File No. 6231.0

Ouna Del Re

Descriptions modified from Dibblee et al., (1974) and Dibblee and Minch (2007) Map modified from Dibblee and Minch (2007)

LEGEND

Planned Bridge

LEG	SEND	Wall No.	<u>, 1</u>				-			T		A AND		C X
	Planned Bridge		·· 1	K			and the second	-	Z	i p	No.	1 mg		A do
(0 100	2	00 ft									Bbo		
										C B				
The los for the total												C'ERDIGE		
	and and	-	1		201	Contraction of the second	A						CT-	A CARLER
SOI	L MAP LEGEND: Mapped Soil			% Passi	ing Sieve	Atterbe	rg Limits			Risk of C	Corrosion	1	- Herene a	The Co
ID	Name	Depth (in)	USCS Group Symbol	No.4	No. 200	Liquid Limit	Plasticity Index	Depth to Bedrock (ft)	Seasonai High Water Table (ft)	Uncoated Steel	Concrete	Ant		AKE
		0-8	SC-SM	100	25-35	0-25	NP-6					C. The Proof		A REPLY DE
AkD/	Arnold loamv sand	8-28	SC-SM	100	30-40	0-23	NP-6	3.5-5.0	NOR	Low	Moderate		Hall TO	
AkF		28-48	SC-SM	100	28-38	0-23	NP-6						and the state	and the second
		48-79	ļ		BEDROCK								MILLEN	
BbC	Baywood sand	0-60	SM, SP-SM	100	5-30	0-27	NP	NOR	NOR	Moderate	Moderate			Tra
Rb	Rindge muck	0-60	PT	-	-	- Description	- ns modified fre	NOR	0-6.0	High Conservation	Moderate		SOCIATES	FO
NOR - 1	None Reported					Description	is mounieu IIC	om 0.3. 3011/1Val	urai NESUUICES	CONSCIVATION	501 VICE (2020)	File No. 6231.0	April 2023	1

NOTES:

- and effects of paleotopography.
- approximated for clarity.

- 7. Concrete between 10.5' 12' bgs.

Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Del Rey Oaks, California

LEGEND:

- B-1/ Projected graphic boring and CPT logs (See plan CPT-1 locations in Figure 1 and logs in Appendices B and D)
 - Artificial fill
 - Predominantly clay soil behavior type
 - Predominantly silt soil behavior type
 - Predominantly sand soil behavior type
 - Weathered bedrock (MONTEREY FORMATION?)
 - Peat
 - Sensitive, fine grained soil behavior type
 - Standard Penetration Test (SPT) sampler resistance
- 13- "N-Value" blows per foot (bpf) count (ASTM D1586), see Appendices A and B for legend and logs
 - Modified California sampler penetration
 - resistance blows per foot (bpf) count, see Appendices A and B for legend and logs
 - Depth of free groundwater measured in boring after drilling or inferred by pore pressure dissipation test in CPT
 - Depth of free groundwater first noted seeping into boring during drilling

1. Location of borings, CPTs, and schematic profile are shown in Figure 1. 2. Profile details (e.g. distances and elevations) are based on FORTAG Undercrossing at SR 218 Bridge General Plan from Cornerstone (2022), and Improvement Plan and Profile from GHD (2022).

3. Ground types and groundwater conditions shown are projected from boring and CPT locations. These types and conditions may differ away from boring and CPT locations, including from stratal undulations, lensing, lateral facies changes,

4. Width and placement of graphic boring and CPT logs is exaggerated and

5. N₆₀ is the SPT N-value, corrected for field procedures and apparatus, and correlated from the CPT results based on Robertson (2009). FS_{lin} is Factor of Safety against liquefaction; the red shaded zone represents FS_{lig}<1.

6. Hand augered to 6'; obstruction encountered from 11' to 15'; punched through the obstruction and advanced to refusal.

GHD

Schematic Subsurface Exploration Profile A-A'

Figure

5
LEGEND:

- Planned SR 218 Undercrossing Bridge
- Planned Retaining Wall No.1

Drainageway

Mean Vs30

1150 ft/sec to 1200 ft/sec1250 ft/sec to 1300 ft/sec

Map modified from Branum et al., (2016)

LEGEND

Planned Retaining Wall No.1 Planned Bridge

LIQUEFACTION SUSCEPTIBILITY

VL - Very Low L - Low M - Medium H - High VH - Very High Vb - Variable

Map modified from Dupre (1990)

	CMILLEN ACOBS SOCIATES	GHD Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Del Rey Oaks, California	Figure 10
File No. 6231.0	April 2023	Lateral Earth Pressures for Retaining Wall No. 1	

Appendix A

LEGEND FOR BORING LOGS IN APPENDIX B

X Grab sample

- 2" I.D./2.5" O.D. Split spoon sampler (SSS) (ASTM D1586)
- 1.4" I.D./2" O.D. Standard Penetration Test (ASTM D1586) sampler (SPT)
- Depth of free groundwater seepage first ∇ noted into boring during drilling
- Depth of free groundwater level measured V in boring after drilling

<u>CONSTITUENT</u>	DESCRIPTIONS
DESCRIPTION	CRITERIA
TRACE FEW LITTLE SOME MOSTLY	less than 5% 5% to 10% 15% to 25% 30% to 45% 50% to 100%
Reference: ASTM	D2488. Note 15

RELATIVE DENS	ITΥ	CONS	ISTENC	Y
SANDS AND GRAVELS	SPT, N	SILTS AND CLAYS	SPT, N	UNCONFINED COMPRESSIVE STRENGTH, tsf
VERY LOOSE	0-4	VERY SOFT	0-2	0-0.25
LOOSE	4-10	SOFT	2-4	0.25-0.50
MEDIUM DENSE	10-30	MEDIUM STIFF	4-8	0.50-1.00
DENSE	30-50	STIFF	8-15	1.00-2.00
VERY DENSE	50+	VERY STIFF	15-30	2.00-4.00
		HARD	30+	>4.00
Reference: Terzaghi, K. and Peo John Wiley and \$	k, R., SOIL M Sons, New Yor	IECHANICS IN ENGINEERIN rk, 1967. Page 341 Table 45.	IG PRACTICE 1 and pp. 347	, 2nd ed., Table 45.2.

MOISTURE CONDITION DESCRIPTION **CRITERIA** DRY Absence of moisture, dusty, dry to the touch MOIST Damp but no visible water WET Visible free water, usually soil is below water table Reference: ASTM D2488, Table 3 - Criteria for Describing Moisture Condition

GROUND BEHAVIOR	CLASSIFICATION
Ground that can be excavated without initial support to shallow depths (typically less than 10 feet) and where shoring can be installed before the ground starts to move. For example, unfissured hard clay when not highly overstressed.	Firm
Ground of which chunks or flakes begin to fall off excavation walls. If raveling starts within a few minutes of excavation then it is "fast" raveling; otherwise, it is "slow" raveling. Silts and sands with clay binder may be fast raveling. Stiff fissured clays may be slow or fast raveling depending upon the degree of overstress.	Raveling
Ground that squeezes or plastically extrudes into excavations without visible fracturing. Can occur at shallow to medium depth in very soft to medium stiff clay, and can occur in stiff to hard clay under high overstress.	Squeezing
Ground consisting of clean dry granular material (e.g., sand and gravel) that moves by gravity to its angle of repose.	Running
Ground in a fluid-like condition (e.g., a disturbed mixture of predominantly silt, sand and/or gravel with water), that flows across pressure gradients.	Flowing
Ground that expands in volume due to the absorption of water (e.g., clays).	Swelling
Reference: Modified from Heuer, R.E., 1974, Important ground parameters in soft ground tunneling, Subsurface exploration fo and heavy construction, New England College, Henniker, New Hampshire, American Society of Civil Engineers, N	or underground excavation New York, P. 41-55.

1. Project borings were made with a SIMCO 2400 SK-1 Longstroke drill rig uisng 7-inch diameter continuous hollow stem augers as indicated on the respective log. Lines separating strata in the logs represent approximate boundaries and are dashed where strata change depth is less certain. Strata change may be gradual across the boundary lines logged. Logged groundwater depths are subject to limitations described in the text of the report.

NOTES

2. Penetration Resistance (blows/ft.) are the last 12 inches of an 18-inch drive using a 140-pound cathead sampling hammer falling 30 inches per blow unless noted otherwise. The Penetration Resistance values noted on the logs are actual blows per foot of penetration for the respective sampler type (e.g., MCS sampler penetration resistance blow counts have not been reduced to SPT sampler "N" values).

GHD

Figure

Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Monterey, California

Boring Log Legend

(1 of 2)

LEGEND FOR BORING LOGS IN APPENDIX B (Cont'd)

CRITER	- RIA FOR ASSIGNI	ING GROUP SYMBOLS A	ND GROUP NAM	ES ^A	<u> </u>				GROUP SYMBOL	GR	OUP NAME ^B	
	0.0.4.11.5.0		Clean Gravels	Cu	<u>≥</u> 4a	and $1 \le Cc$	≤3 ^E		GW	Well-g	raded gravel F	
SOILS	GRAINED	GRAVELS	< 5% fines ^C	Cu <	< 4 and	d/or 1 > Cc > 3	3 ^E		GP	Poorly	graded gravel F	
More than	50% retained	More than 50% of coarse fraction retained on No. 4 sieve	Gravels with Fines	Fine	s clas	sify as ML or I	MH		GM	Silty g	ravel ^{F,G,H}	
on No. 200) sieve		> 12% fines $^{\rm C}$	Fine	s clas	sify as CL or 0	СН		GC	Clayey	/ gravel ^{F,G,H}	
			Clean Sands	Cu≥	<u>6</u> and	d 1 <u>< C</u> c < <u>3</u>	E		SW	Well-g	raded sand ^I	
		SANDS	< 5% fines ^D	Cu <	< 6 and	d/or 1 > Cc > 3	3 ^E		SP	Poorly	graded sand	
		passes No. 4 sieve	Sands with Fines	Fine	s class	sify as ML or I	ИН		SM	Silty s	and ^{G,H,I}	
			> 12% fines ^D	Fine	s clas	sify as CL or (CH		SC	Clayey	/ sand ^{G,H,I}	
FINE-GRA	AINED SOILS		Inorganic	<u>PI ></u>	7 plot	s on or above	"A" line ^J		CL	Lean	lay ^{K,L,M}	
50% or mo	ore passes	SILTS AND CLAYS		PI <	4 plot	s below "A" lir	ne ^J		ML	Silt ^{K,}	L,M	
the No. 20	0 sieve	Liquia limit <_50	Organic	Liqu	id limit	t-oven dried	< 0.7	5	OL -	Organic Clay KLMO		
				Liqu						Organ	ic Silt K,L,M,O	
			Inorganic		ots on	or above "A"	line			Fat clay K,L,M		
		SILTS AND CLAYS		PI pi	ots de	low "A" line			MH	Elastic silt ^{K,L,M}		
		Liquid IIIIII > 50	Organic	Liqui	id limit id limit	-oven dried	< 0.7	5	OH -	Organic Silt ^{K,L,M,Q}		
			Brimarily organic m	attor dark co	lor an	d organic odd				Peat		
NOTES	NGANIC SOLS		Frinding Organic In			u organic ouc	И		F1	i cai		
A	Based on the mater	rial passing the 3-inch (75mm) s	sieve.				PLAS	TICI	Y			
_	If field sample conta	ained cobbles or boulders, or bo	hth	Term	1	PI	Dry Stre	ength		Field	Test	
В	add "with cobbles o	r boulders, or both" to group na	me.*	Nonplas	tic	0-3	Vervl	w	Falls apa	nt easily	,	
С	Gravels with 5% to	12% fines require dual symbols	:	Slightly pla	astic	3-15	Sligh	nt	Easily cri	ushed w	ith fingers	
	GW-GM well-grad	ed gravel with silt		Medium pl	astic	15-30	Mediu	Im	Difficult to	o crush	-	
	GVV-GC well-grade	ed gravel with clay Ided gravel with silt		Highly pla	astic	30 or more	High	ı	Impossib	le to cru	sh with fingers	
	GP-GC poorly gra	ded gravel with clay		Reference:	Sower	s, George F., Ii	ntroductory Soil	Mechan (acmilla	ics and Foun	dations:		
D	Sands with 5% to 1	2% fines require dual symbols:			New Y	ork. 1979, Pag	enng, 4th ed., N je 83 Table 2:10	/iau11111a).		co., inc.,		
	SW-SM well-grade	ed sand with silt										
	SVV-SC well-grade	ed sand with clay ded sand with silt					<u>C</u>	iRAIN	<u>I SIZE</u>			
	SP-SC poorly grad	ded sand with clay			(Group	Texture		Sieve	Di	mension, mm	
-	D 60	$(D_{30})^2$				Boulder	-		> 12"		> 305	
E	\overline{D}_{10}	$D_{10} \times D_{60}$				Cobble	-		3"		75	
F	If soil contains >_15	% sand, add "with sand" to gro	up name.			Gravel	Fine		3/4 No 4		4 75	
G	If fines classify as C	CL-ML, use dual symbol GC-GN	1, or SC-SM.				Coarse		No. 10		2.00	
н	If fines are organic	add "with organic fines" to grou	in name			Sand	Medium	I	No. 40		0.425	
	If acil contains > 15						Fine	Ν	lo. 200		0.075	
I	If soli contains \geq 15	% gravel, add with gravel to g	roup name.			Fines	Silt	<	No. 200		0.002	
J	If Atterberg limits pl	ot in hatched area, soil is a CL-	ML (silty clay).		Rofor	ence: modifier	Clay	2487			< 0.002	
К	If soil contains 15%	to 29% plus No. 200,add "with	sand" or "with gravel	",	Refer	ence. modified		2407				
	If soil contains > 30	minant. % plus No 200, predominantly	and add "sandy" to	*The larg	gest µ	particle that	could have	been drill	retrieved fi	rom a l moler	boring is a	
-	group name.		sanu, auu sanuy to	and bou	lder-s	size particle	s, if any, are	e too la	arge to retr	inpier. ieve fr	om small diameter	
м	If soil contains > 30	% plus No 200 predominantly	pravel add "gravelly"	borings	berfo	rmed for the	e project. Th	nerefor	e, there m	ay hav	e been larger	
	to group name.	, , , , , , , , , , , , , , , , , , ,	g.a.o., aaa g.a.oj	particles	(e.g.	, cobble- ai	nd boulder-s ill cuttings a	size) in nd con	the boring	gs than locae	were retrieved in	
Ν	$PI \ge 4$ and plots on	or above "A" line.		Samples	, 003	erveu in un	ii culliigs ai		sequentiy	logget	rin bonngs.	
0	- , PI < 1 or plots below	w"A" line										
Р	PI plots on or above											
Q	PI plots below "A" li											
					C						Figure	
					_ <u> </u>							

GHD Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR218 Segment Monterey, California

Boring Log Legend

0

A-1

File No. 6231.0

April 2023

OBS

ASSOCIATES

WEATHERING CRITERIA	STRENGTH	
FRESH - Rock fresh. crystals bright, few joints show slight st	aining. PLASTIC - moldable	
Rock rings under hammer if crystalline.	FRIABLE - crumbles easily by rubbing wit	h fingers
VERY SLIGHT - Rock generally fresh, joints stained, some joints ma	ay show thin WEAK - an unfractured specimen of su	ch material
clay coatings, crystals in broken face show bright. Rock rings under hammer if crystalline.	MODERATELY - specimen will withstand a few STRONG hammer blows before breaking	heavy
SLIGHT - Rock generally fresh, joints stained, and discoloration into rock up to 1 inch. Joints may contain clay. In g some occasional feldspar crystals are dull and disco Crystalline rocks ring under hammer.	on extends granitoid rocks olored.	, heavy yield ing
MODERATE - Significant portions of rock show discoloration and v effects. In granitoid rocks, most feldspars are dull a some show clayey. Rock has dull sound under ham	weathering hammer blows and will yield or and small flying fragments with mmer and shows	nly dust a difficulty
MODERATELY - All rocks except quartz discolored or stained. In gra SEVERE all feldspars dull and discolored and majority show h Rock shows severe loss of strength and can be exc geologist's pick. Rock goes "clunk" when struck.	ANGLE FROM HORIZONTAL DESCRIPTION anitoid rocks, kaolinization. 0-5° horizontal cavated with 35-55° moderate 55-85° steep 85-90° vertical	<u>אר</u>
SEVERE - All rocks except quartz discolored or stained. Rock and evident, but reduced in strength to strong soil.	i "fabric" clear In granitoid	
rocks, all feldspars kaolinized to some extent. Som	ne fragments of DISCONTINUITIES	
strong rock usually left.	SPACING FRACTURING BE	DDING
VERY SEVERE - All rock except quartz discolored or stained. Rock " discernible, but mass effectively reduced to "soil" wi	"fabric" Less then ½ inch crushed lam	inated
fragments of strong rock remaining.	¹ / ₂ inch to 2 inches very close ver	y thin
	2 inches to 1 foot close thir)
COMPLETE - Rock reduced to "soil". Rock "fabric" not discernible discernable only in small scattered locations. Quar	e or 1 foot to 3 feet moderately close me rtz may	dium
be present as dikes or stringers.	3 feet to 10 feet wide thic	ĸ
	More than 10 feet very wide ver	y thick
HARDNESS	APERTURE	
VERY HARD - Cannot be scratched with knife or sharp pick. Brea	aking of hand strenick STRUCTURE DESCRIPTION	
	tight no visible separation	
HARD - Can be scratched with knife or pick only with difficu Hard blow of hammer required to detach hand spec	cimen. open amount of separation, staining o on fracture surfaces, and fracture	r coatings e surface
MODERATELY- Can be scratched with knife or pick. Gouges or groHARD1/4 inch deep can be excavated by hard blow of poigeologist's pick.Hand specimens can be detachedblow.	ooves to int of a by moderate wa by moderate int of a by moderate	a complete), ess
MEDIUM - Can be grooved or gouged 1/16 inch deep by firm p knife or pick point. Can be excavated in small chip about 1-inch maximum size by hard blows of the po	pressure on filled degree of filling, (i.e. partial or constrained by the pressure of a filled degree of filling, (i.e. partial or constrained by the pressure of filling may be a set of the pressure of the	omplete), be noted
yeologists pick.	ROUGHNESS	
SOFT - Can be gouged or grooved readily with knife or pick be excavated in chips to pieces several inches in si blows of a pick point. Small thin pieces can be brol pressure.	k point. Can size by moderate sken by finger SURFACE Stepped near normal steps and ridges fracture surface	occur on
VERY SOFT Can be conveduable - Imite Can be successful	rough large, angular asperities can b	e seen
VERY SOFT - Can be carved with a knite. Can be excavated rear of pick. Pieces 1-inch or more in thickness can be finger pressure. Can be scratched readily by finger	Ph 201	
Petersnool Output and Investigation for Design and Output at the	adily with point broken with mail.	nd fracture
Buildings, ASCE-Manuals and Reports on Engineering Prac	adily with point broken with mail. with rnail. slightly rough with rough small asperities are clearly visible ar surface feels abrasive small asperities on the fracture visible and can be felt	nd fracture e surface
	adily with point broken with mail. undations of ctice-No. 56, moderately rough asperities are clearly visible ar surface feels abrasive small asperities on the fracture visible and can be felt no asperities, smooth to touch	nd fracture e surface
1976, by American Society of Civil Engineers.	adily with point broken with mail. undations of ctice-No. 56, moderately rough slightly rough small asperities are clearly visible ar surface feels abrasive small asperities on the fracture visible and can be felt no asperities, smooth to touch polished extreamly smooth and shiny	nd fracture e surface
1976, by American Society of Civil Engineers.	adily with point broken with mail. undations of ctice-No. 56, Moderately rough asperities are clearly visible ar surface feels abrasive slightly rough small asperities on the fracture visible and can be felt smooth no asperities, smooth to touch polished extreamly smooth and shiny	e surface
1976, by American Society of Civil Engineers. Tra JACOBS ASSOCIATES	adily with point broken with mail. undations of ctice-No. 56, BHD ansportation Agency for Monterey County RTAG - Canyon Del Rey/SR218 Segment Monterey, California	e surface

Appendix B

					LOG OF BORING E	-4 ^①							X		GRAIN SIZE			DIR SH	RECT EAR
	E NO.		ATION ANCE	DWATER	LOCATION: see Figure	1				JRE	YTISN:	LIMIT	CITY INDE	(ə	00 sieve)	(eve)	FINED ESSIVE	u u	Angle
DEPTH	SAMPLE	ТҮРЕ	PENETF RESIST/	GROUN		DESCRIPT	FION ⁽²⁾			MOISTL	DRY DE	LIQUID	PLASTIC	Gravel (>#4 sieve	Sand (#4 to #20	Fines (<#200 si	COMPR	Cohesic	Internal Friction
reet			biows/π.	3	SILTY CLAYEY SAND (5M/SC) - F	ILL			%	IDS./TL.º			%	%	%	кips/п.2	FINES 7% Silt	
-	1	Х			- dark to very dark bro - few gravel - nonplastic	wn	- loose - dry to moist							6	80	 14	7	% Clay	
-	2		a		- concrete at 2' to 3'														
5-	2	7	7							8	103								
-	3		1																
					SILTY CLAYEY SAND (\$	 SM/SC)		·	_										
-					- dark gray to black - trace gravel		- loose - moist to wet	CORROSION T	EST	٦								FINES	
10-	4		6	Ť	- slightly to medium pl	astic		Sample B-4- See Appendix	-5 x C							Γ	→ 3 19	1% Silt 9% Clay	t y
-	5		5											<1	50	50			
-																			
- 15-																			
-	6		15	\bigtriangledown	- dark gray		- slightly plastic	: n stiff	Ч	43	74							270	21°
-	7		4	-	- few clay		- wet					46	12						
-					- dark gray - slightly plastic	SM/SC)	- loose to mediu - wet	um dense											
20-																			
-	8		26							26	98						→ 2	FINES 5% Silt	t
-	9	/	9		LEAN TO FAT CLAY (Cl - dark gray	L/ CH)	- medium to hig	ghly plastic							67	33	8	% Clay	/
-							- wet		٦										
-25					- / - dark gray - trace clay and gravel		- medium dens - wet	e to dense										_	
-					- nonplastic	AT 27 FEE	T ON FIGURE B	-4 (2 of 2)											
DTES	1	Drille Figu	ed 08/: re A-1,	26/20 Appe	D21 using a SIMCO 2400 SK- ndix A.	1 Longstroke	e, 7" hollow stem at	ugers, and a 30" di	lrop b	oy 14	0 lb. ca	thead	samp	oling h	amme	r. See	notes i	n	I
X	2 3	See I Grou back	report ndwat filling	text a er see on 08	nd figures in Appendices A ar page was encountered in sar 3/26/2021.	nd C for addit mples or duri	ional definitions, b ng drilling at a dep	oring information, th of 10' and 16.5'	lab t b' and	est re d a gr	esults, a oundwa	and gr ater le	ound vel wa	descri Is mea	ptions asured	at 31	.' prior t	o borin	ıg
				M	cMILLEN			GHE)				L .				Fi	gure	;
					ACOBS SSOCIATES		FORTAG - E	ition Agency fo Canyon Del Ri)el Rey Oaks,	or M Rey/S Cali	ionte SR2 iforr	erey (18 Se nia	oun gme	iy ent				E	3-4	$\left \right $
F	ile	No. (6231	.0	April 2023		Le	og of Bori	ing	ġВ	8-4						(1	of 2))

					LOG OF BORING E	F4 (continued) ⁽¹⁾				×		GRAIN SIZE			DIR SHE	ect Ear
	e No.		ATION ANCE	DWATER			JRE	YTISN	LIMIT	CITY INDEX	e)	00 sieve)	ieve)	FINED ESSIVE STH	u	 Angle
DEPTH	SAMPLI	ТҮРЕ	PENETF RESIST	GROUN		DESCRIPTION	MOISTL	DRY DE	liquid	PLASTIC	Gravel (>#4 siew	Sand (#4 to #2	Fines (<#200 si	COMPR	Cohesic	Internal Friction
feet			blows/ft.		LOG CONTINUED F	ROM 27 FEET ON FIGURE B-4 (1 of 2)	%	lbs./ft.3			%	%	%	kips/tt. ²	p.s.f. INES % Silt	1
- - 30-	10 11	/	52 12		POORLY GRADED SAN - dark gray - trace clay and gravel - nonplastic	ID WITH SILT (SP-SM) - medium dense to dense - wet	22	100			4	88	8	3	% Clay	
-	12		20	▼	_											
35- - -					ELASTIC SILT (MH) - white - diatomaceous and/c	- highly plastic or tuffaceous - medium stiff ash 2) - wet										
13 4 - wet																
-07					- nignly plastic - wet 112 42 BOTTOM OF BORING AT 40 FEET Image: Comparison of the second seco											
- - 45- -																
NOTES	1	See	notes	on Fi	gure B-4 (1 of 2).											
				M	CMILLEN	GH Transportation Agency	D for N	lonter	ey Co	ounty	/			Fi	gure	•
				AS AS	AUUDO SSOCIATES	FORTAG - Canyon Del Del Rey Oak	Rey/ s, Cal	SR218 ifornia	8 Seg a 1	gmer	nt			B	3-4	-
File No. 6231.0 April 2023 Log of Boring B-4 ((2	ot 2))			

					LOG OF BORING E	}-5a ^①				×		GRAIN SIZE			DIR SH	RECT EAR
	NO.		ATION NCE	DWATER	LOCATION: see Figure	1	RE	VITY	_IMIT	ity inde	(*	00 sieve)	eve)	FINED ESSIVE STH	ç	Angle
DEPTH	SAMPLE	TYPE	PENETF RESIST/	GROUN		DESCRIPTION	MOISTU	DRY DE	riquid I	PLASTIC	Gravel (>#4 sieve	Sand (#4 to #20	Fines (<#200 si	COMPRI	Cohesio	Internal Friction
feet			blows/ft.	3	POORLY GRADED SAN	ND (SP) - FILL	%	lbs./ft.3			%	%	%	kips/ft.²	p.s.f.	
-					 - light brown - trace clay and gravel - nonplastic 	- ury										
-					BORING B-5a REFUS AND METAL, MOVI	AL AT 2 FEET ON APPARENT CONCRETE ED 10 FEET TO THE SOUTHWEST AND										
5-					D	RILLED BORING B-5b										
-																
-																
10-																
-																
15-																
-																
-																
-																
20-																
-																
-																
25-																
ល	(1) (1)	Drille	ed 08/:	26/20) 21 using a SIMCO 2400 SK-	1 Longstroke, 7" hollow stem augers, and a 30" droi	o bv 14	0 lb. ca	athead	samr	oling h	 amme	er. See	notes in	n	
NOTE	23	Figu See Grou	re A-1, report f	Appe text a er see	ndix A. nd figures in Appendices A ar page was not encountered d	nd C for additional definitions, boring information, lal uring drilling nor prior to boring backfilling on 08/26	o test r /2021	esults,	and gr	ound	descri	iptions				
	-															
				M	cMILLEN	GHD Transportation Agency for	Mont	arev (Ī	Fi	gure	;
				J AS	ACOBS SSOCIATES	FORTAG - Canyon Del Rey Del Rey Oaks, C	//SR2 aliforr	18 Se 1a	egme	ent				B	-5	a
F	File No. 6231.0 April 2023 Log of Boring B-5a															

					LOG OF BORING E	₽-5b ^①					X		GRAIN SIZE	1		DIF SH	RECT EAR
	E NO.		ATION	DWATER	LOCATION: see Figure	1		RE	NSITY	LIMIT	ITY INDE	(i)	00 sieve)	eve)	FINED ESSIVE		Angle
DEPTH	SAMPLE	TYPE	PENETF RESIST/	GROUN		DECODID	10N ²	MOISTU	DRY DE	riquid I	PLASTIC	Gravel (>#4 sieve	Sand (#4 to #2(Fines (<#200 si		Cohesic	Internal Friction
feet	• /		blows/ft.	3	SILTY SAND (SM) - FIL		ION	%	lbs./ft.3	_	_	%	%	%	kips/ft.	² p.s.f.	
-					- light brown - nonplastic	-	- medium dense - dry								_		
	1		17					2	101							FINES 5% Silt 1% Clay	,
			4		POORLY GRADED SAN (SP-SM/SP-SC) - FILL	ID WITH SI	LT AND CLAY					2					
5- - -	2		4		- yellowish brown and to light brown with so reddish brown - trace gravel	brown ome	- nonplastic - loose - dry to moist					3	00	9			
-					- light brown with som	e reddish b	rown										
- 10-	3		4					4	95								
-	4a				- sample 4a bouncing - drilled through concr	ete betwee	n 10.5' and 12'										
-	4b		3		SILTY CLAYEY SAND (5M/SC)		-				<u> </u>				╞	
-			_		- very dark gray - tuffaceous layers (?)		- very loose to loose - moist to wet										
15-					- trace gravel - medium to highly pla	stic fines											
-																FINES	
-	5		4	\bigtriangledown										[.6% Sili 9% Clay	t ,
-				-				78	52							620	26°
20-	6		4									<1	/5	25			
-															<u> </u>		
-					- dark brown	SIVI/SC)	- loose										
-	7		6		- medium plastic fines	i								╎┍		FINES	t
25-	8		4									4	52	 44		1% Cla	y I
-				▼ -													
_					LOG CONTINUED	AT 27 FEE	T ON FIGURE B-5b (2 of 2)										
OTES	1	Drille Figu	ed 08/ res A-1	26/20 L and	D21 using a SIMCO 2400 SK- A-2, Appendix A.	1 Longstroke	e, 7" hollow stem augers, and a 30" dro	p by 14	10 lb. ca	athead	l samp	oling h	namme	er. See	e notes	in	
Ž	3	See Grou back	report Indwat kfilling	text a er see on 08	riu rigures in Appendices A ar epage was encountered in sai 3/26/2021.	nples or duri	non an deminiuoris, boring information, laing drilling at a depth of 18' and 29', an	u test r d groui	esuits, andwater	ana gi r level	was n	uescr neasu	ired at	26' pi	rior to b	oring	
				M	cMILLEN		GHD		-	_					F	igure	;
				J	ACOBS		Iransportation Agency for FORTAG - Canyon Del Rey Del Rey Oaks	Mont y/SR2 alifor	erey (218 Se nia	joun egme	ty ent				В	-5	b
File No. 6231.0 April 2023 Del Rey Oaks, California															(*	1 of 2)

					LOG OF BORING E	3-5b (continued) $^{ extsf{D}}$				×		GRAIN SIZE			DIR SH	ECT EAR
HIT	MPLE NO.	PE	NETRATION SISTANCE	ROUNDWATER			DISTURE	Y DENSITY	DUID LIMIT	ASTICITY INDE	avel :4 sieve)	nd to #200 sieve)	IES 200 sieve)	lconfined Mpressive Rength	hesion	ernal ction Angle
E feet	SA	≽	비해 blows/ft.	ĞР		DESCRIPTION	W %	ے lbs./ft. ³	Ĕ	₫	°9. %	8 8 #	Ч 8 8	≦ວ5 kips/ft.²	Ö p.s.f.	Fri Fri
- - - 30-	9		5	<u> </u>	LOG CONTINUED F SILTY CLAYEY SAND (- dark brown - trace gravel - medium plastic fines	ROM 27 FEET ON FIGURE B-5b (1 of 2) SM/SC) - loose - wet s										
- - 35- -	10 11		34 26		ELASTIC SILT WITH S/ CLAYSTONE/SILTSTO - gray, trace blue mott - few clay - medium plastic and plastic - cemented soil, to ver	AND (MH) and DNE - MONTEREY FORMATION (?) tling - very stiff soil, and soft rock hardness highly - wet ery severely weathered bedrock	15	104						0.4		
- - 40	12	7	27						87	25						
45- 50-	1	See	notes	on Fi	BOTTO gure B-5b (1 of 2).	DM OF BORING AT 40 FEET										
ION																
				M	cMILLEN	GH	ID							Fi	gure	;
					ACOBS SSOCIATES	Transportation Agency FORTAG - Canyon Del Del Rey Oaks	for M Rey/S s, Cal ring	lonter SR218 ifornia R- 5	ey C 8 Seg a 5 b	ount <u>y</u> gmer	y nt			B-	-5	D
File No. 6231.0April 2023Log of Boring B-5b										\ ~						

Appendix C

Consolidated Undrained Direct Shear (ASTM D3080M)

				(7.0			<u>'''</u>						
CTL Job #		1022 024		Draiget #:			62	024			Dir	MD	
CTL JOD #	MoN <i>l</i> ille	1022-034	agiatag	Project#.			0/0/	2024		- ~	bookod:		
Droject Name		In Jacobos Ass	ociales	Date.			9/9/	2021		_ 0	neckeu.	PJ	
i iojectivanie.	Sn	ecimen Data		Remolding mild.	D	hi (do	(a)	1			hi (dea)		
		2	3	1	F		<u>'9)</u>			011.1	m (ueg)		
Boring	B-4-6a	2 B-4-6a	B-4-6a	4	Co	hesion (psf)			Ult. Co	ohesion (psf)		
Sample	D- 4 -0a	D-4-0a	D- 4 -0a										
Denth (ft):									0		D.(
Visual	Grav Sandv	Grav Sandv	Grav Sandv						Snea	rotres	s v s. Detoi	mation	
Description	CLAY	CLAY	CLAY			2500 -						Sam	ple 1
Dooonpaon												Sam	nple 3
												—×— Sam	nple 4
											Ì		
Normal Load (psf)	1000	2000	4000			2000 -				u de la constante de la consta	a di na si na s		
Dry Mass of Specimen (g	85.9	88.5	94.6										
Initial Height (in)	1.01	1.01	1.00		Ê			F					
Initial Diameter (in)	2.42	2.42	2.42		sd) s	1500 -		<u> </u>					
Initial Void Ratio	1.383	1.326	1.149		ress			Ĩ.					
Initial Moisture (%)	46.3	44.6	36.9		r St								
Initial Wet Density (pcf	103.5	104.8	107.4		hea	1000 -							
Initial Dry Density (pcf) 70.7	72.5	78.4		ŝ	1000				-			
Initial Saturation (%)	90.4	90.8	86.7					-					
ΔHeight Consol (in)	0.0198	0.0411	0.0786			500						Planning of	
At Test Void Ratio	1.336	1.231	0.980			500 -							
At Test Moisture (%)	46.7	44.1	34.8										
At Test Wet Density (pcf	105.9	108.9	114.7			4	ľ						
At Test Dry Density (pcf	72.2	75.5	85.1			0 -	0	5	0	10.0	15	<u> </u>	20.0
At Test Saturation (%)	94.4	96.8	95.8			0	.0	Pole	 ativo I at	oral Dier	lacoment (%		20.0
Strain Rate (%/min)	1.2	1.0	1.1					IVEIC	ilive Lai		nacement (7	0)	
Strengths Picked at	Peak	Peak	Peak										
Shear Stress (psf)	1008	974	1979										
∆Height (in) at Peak	< Comparison of the second sec							She	ar Stres	svs. N	ormal Loa	d	
Ultimate Stress (psf))					800	n				•	Peak	
						000	~]					Ult. Stress	10
	C	Change in Height	t								•	Ultimate	
0.0000				Sample 1									
				Sample 2		600	10						
0.2000 –				Sample 4	psf								
					ss,								
					Stre	400	ю 						
					ear								
Disp					sh								
0.8000						200	ю [‡]						
										Ĭ			
- 1.0000 -								٠	•				
							, 1						
1.2000	50	10.0	15.0	20.0			0	2	000	4000	6000	8000	1
0.0	Re	lative Lateral Disp	acement (%)	20.0					Norm	nal Load	, psf		
Remarks: *DS-CU* A fully undrained condition may not be attained in t						not m	easur	ed during	undrain	ed direct	t shear tests	. Engineer	ring
	judgement is requ	uired to determine	phi and cohesion	n, no phi or cohesion	is re	ported.	To a	idd phi ai	nd cohes	ion to th	ne report go	to the "phi"	tab
©	and in cells G30, Values" tab using	G31, H30, and H3	and E2	is for a line through	the 3	aata p	oints	. ine po	ints plot	.ea can l	be changed	on the "Eng	ł

Consolidated Undrained Direct Shear (ASTM D3080M)

CTL lob #:	CTL lob #: 1022-034 Project #						62	21			Byr	<u>.</u>	
Client:	McMille	n Jacobs Ass	ociates	Date:			2/10/	/2021		– Ch	ecked:	P	<u>,</u>
Project Name:		11 000000 7 000	0014100	Remolding Info:			, 10	2021		_ 011	concu.		·
	Sn	ecimen Data		. tomoiumg in or	Р	hi (de	a)			Ult. Ph	i (dea)		
	1	2	3	4			9/				(
Boring:	B-5-5b	B-5-5b	B-5-5b		Co	ohesion (p	osf)			Ult. Cohe	sion (psf)		
Sample:													
Depth (ft):									Shea	r Stress '	v s. Defoi	mation	
Visual	Olive Gray	Olive Gray	Olive Gray								۔۔۔۔ ۔ ۔ ۔ ۔ ۱	Si	ample 1
Description:	Sandy SILT	Sandy SILT	Sandy SILT			4500 -						S;	ample 2
												<u>_</u> Sa	ample 3
						4000 -			X		[Sa	ample 4
Normal Load (psf)	1000	2000	4000			3500 -		1	A				
Dry Mass of Specimen (g)	61.1	62.7	65.2			3000 -			A		_		
Initial Height (in)	1.00	1.00	1.02		(Jsc	5000		It					
Initial Diameter (in)	2.42	2.42	2.42		l) ss	2500 -							
Initial Void Ratio	2.338	2.251	2.185	-	Stre			1					
Initial Moisture (%)	79.3	78.2	75.6		ear (2000 -		<u> </u>					
Initial Wet Density (pcf)	90.6	92.4	92.9		sh			†					
Initial Dry Density (pcf)	50.5	51.9	52.9			1500 -				-			
Initial Saturation (%)	91.6	93.8	93.4					And a second					
ΔHeight Consol (in)	0.0069	0.0097	0.0233			1000 -							
At Test Void Ratio	2.315	2.219	2.112										
At Test Moisture (%)	81.7	79.3	77.3			500 -							
At Test Wet Density (pcf)	92.4	93.9	96.0			0							
At Test Dry Density (pcf)	50.9	52.4	54.2			0.	.0	5	.0	10.0	15	.0	20.0
At Test Saturation (%)	95.3	96.5	98.8					Rela	ative Lat	eral Displa	cement (%	6)	
Strain Rate (%/min)	1.0	1.0	1.1	-									
Strengths Picked at	Peak	Peak	Peak										
Snear Stress (pst)	2414	4200	4176					She	ar Stres	s v s. Nor	mal Loa	d	
AHeight (In) at Peak				-				••			•	Peak	
Onimate Stress (psi)						800	0 =					- ShearSt	ress
	c	Change in Height	t								•	Ult. Stres Ultimate	s
0.0000			Г	Sample 1									
0.0000				Sample 2		600	0						
0.2000				Sample 3	ۍ ۲								
(ii)				Sample 4	ŝ, p								
ିହୁ 0.4000 –					tres	400	0		•	_			
acer					arS								
de 0.6000					She								
						200		•					
E 0.0000						200							
Z 1.0000													
1.2000							0	2	000	4000	6000	80	00
0.0	5.0 Re l	10.0 ative Lateral Disp	15.0 I acement (%)	20.0			Ũ	-	Norm	nal Load. n	sf	200	
Pomorko	*DS-CU* A fully	undrained condition	on may not be at	tained in this test	∧H i⊲	s not m	easur	ed during	undrain	ed direct s	hear tests	5 Engine	ering
Remarks.	judgement is requ	uired to determine	phi and cohesion	, no phi or cohesion	is re	ported.	To a	add phi a	nd cohes	ion to the	report go	to the "ph	i" tab
©	and in cells G30,	G31, H30, and H3	1 enter end point	ts for a line through	the 3	3 data p	points	. The po	ints plott	ed can be	changed	on the "E	ng
~	Values" tab using	cells L6 A2 C2	and E2										

COOPER																
ΤE	S	Т	I	Ν	G	L	А	В	0	R	А	Т	0	R	Y	

Corrosivity Test Summary

CTL #	1022-034		Date:	9/16/2021		Tested By:	PJ		Checked:	PJ		
Client:	McMillen Jacobs Associates		Project:		•				Proj. No:	6231	-	
Remarks:									•		-	
San	ple Location	cation or ID Resistivity @ 1		ity @ 15.5 °C (0	@ 15.5 °C (Ohm-cm) Chloride Sulf			fate	pH ORP			
Boring	Sample, No.	Depth, ft.	As Rec.	Minimum	Saturated	mg/kg	mg/kg	%	•	(Redox)	At Test	Soil Visual Description
	1 • ·	•				Dry Wt.	Dry Wt.	Dry Wt.		mv	%	-
			ASTM G57	Cal 643	ASTM G57	Cal 422-mod.	Cal 417-mod.	Cal 417-mod.	Cal 643	SM 2580B	ASTM D2216	
B-4-5	-	-	-	1908	-	29	417	0.0417	7.1	-	2.8	Black Silty SAND

Appendix D

PRESENTATION OF SITE INVESTIGATION RESULTS

FORTAG Phase 1 Canyon Del Rey SR218 Segment

Prepared for:

Delve Underground

ConeTec Job No: 23-56-25414

Project Start Date:2023-Feb-21Project End Date:2023-Feb-21Report Date:2023-Feb-22

Prepared by:

ConeTec Inc.

820 Aladdin Avenue, San Leandro, CA 95477 Tel: (510) 357-3677

ConeTecCA@conetec.com www.conetec.com www.conetecdataservices.com

© 2023 ConeTec Group of Companies. All Rights Reserved.

ABOUT THIS REPORT

The enclosed report presents the results of the site investigation program conducted by ConeTec, Inc. The program consisted of Piezocone Penetration Testing and Pore Pressure Dissipation Testing. Please note that this report, which also includes all accompanying data, are subject to the 3rd Party Disclaimer and Client Disclaimer that follow in the 'Limitations' section of this report.

Project Information	
Client	Delve Underground
Project	FORTAG Phase 1 Canyon Del Rey SR218 Segment
ConeTec Project Number	23-56-25414
Rig Description	30-ton Truck CPT Rig (C-15)
Coordinates	
Collection Method	Consumer Grade GPS
EPSG Number	32610 (WGS 84 / UTM 10S)

Cone Penetration Test (CPTu)								
Depth Reference	Existing ground surface at the time of the investigation							
Sleeve data offset	0.1 Meters							

32610 (WGS 84 / UTM 10S)

Calculated Geotechnical Parameters Tables

The Normalized Soil Behaviour Type Chart based on Qtn (SBT Qtn) (Robertson, Additional Information 2009) was used to classify the soil for this project. A detailed set of calculated CPTu parameters have been generated and are provided in Excel format files in the release folder. The CPTu parameter calculations are based on values of corrected tip resistance (q_t) sleeve friction (f_s) and pore pressure (u_2) . Effective stresses are calculated based on unit weights that have been assigned to the individual soil behaviour type zones and the assumed equilibrium pore pressure profile. Soils were classified as either drained or undrained based on the Q_{tn} Normalized Soil Behaviour Type Chart (Robertson, 2009). Calculations for both drained and undrained parameters were included for materials that classified as silt mixtures (zone 4).

Please refer to the list of attached documents following the text of this report. A test summary, location map, and plots are included. Thank you for the opportunity to work on this project.

LIMITATIONS

3rd Party Disclaimer

- The "Report" refers to this report titled FORTAG Phase 1 Canyon Del Rey SR218 Segment
- The Report was prepared by ConeTec for Delve Underground

The Report is confidential and may not be distributed to or relied upon by any third parties without the express written consent of ConeTec. Any third parties gaining access to the Report do not acquire any rights as a result of such access. Any use which a third party makes of the Report, or any reliance on or decisions made based on it, are the responsibility of such third parties. ConeTec accepts no responsibility for loss, damage and/or expense, if any, suffered by any third parties as a result of decisions made, or actions taken or not taken, which are in any way based on, or related to, the Report or any portion(s) thereof.

Client Disclaimer

- · ConeTec was retained by Delve Underground
- The "Report" refers to this report titled FORTAG Phase 1 Canyon Del Rey SR218 Segment
- ConeTec was retained to collect and provide the raw data ("Data") which is included in the Report.

ConeTec has collected and reported the Data in accordance with current industry standards. No other warranty, express or implied, with respect to the Data is made by ConeTec. In order to properly understand the Data included in the Report, reference must be made to the documents accompanying and other sources referenced in the Report in their entirety. Other than the Data, the contents of the Report (including any Interpretations) should not be relied upon in any fashion without independent verification and ConeTec is in no way responsible for any loss, damage or expense resulting from the use of, and/or reliance on, such material by any party.

CONTENTS

The following listed below are included in the report:

- Site Map
- Piezocone Penetration Test (CPTu) Sounding Summary
- CPTu Standard Plots and Advanced Plots
- SBT Zone Scatter Plots
- Pore Pressure Dissipation (PPD) Test Summary
- PPD Test Plots
- Methodology Statements
- Data File Formats
- Description of Methods for Calculated CPT Geotechnical Parameters

SITE MAP

ConeTec Job Number:23-56-25414SourClient:Delve UndergroundAll sourProject:FORTAG Phase 1 Canyon Del Rey SR218 SegmentReport Date:2023-Feb-22

Sounding Location

All sounding locations are approximate

Cone Penetration Test Summary and Standard Cone Penetration Test Plots

23-56-25414 Delve Underground FORTAG Phase 1 Canyon Del Rey SR218 Segment 21-Feb-2023 21-Feb-2023

CONE PENETRATION TEST SUMMARY

Sounding ID	File Name	Date	Cone	Cone Area (cm ²)	Assumed Phreatic Surface ¹ (ft)	Final Depth (ft)	Northing ²	Easting ²	Elevation ³ (ft)	Refer to Notation Number
CPT-1A	23-56-25414_CP03	21-Feb-2023	EC795:T1500F15U35	15	>2.4	2.38	4050435	604098	89	4
CPT-1B	23-56-25414_CP03B	21-Feb-2023	EC795:T1500F15U35	15	17.6	63.40	4050446	604097	93	
CPT-2	23-56-25414_CP04	21-Feb-2023	EC795:T1500F15U35	15	14.6	66.52	4050429	604100	87	

1. The assumed phreatic surface was based off the shallowest pore pressure dissipation tests performed within or nearest the sounding. Hydrostatic conditions were assumed for the calculated parameters.

2. The coordinates were collected using consumer grade GPS equipment. EPSG number: 32610 (WGS84 / UTM Zone 10S).

3. Elevations are referenced to the ground surface and were acquired from the Google Earth Elevation for the recorded coordinates.

4. The assumed phreatic surface is based on the pore pressure dissipation tests nearby soundings.

The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Equilibrium Pore Pressure (Ueq) Assumed Ueq
Dissipation, Ueq achieved
Dissipation, Ueq not achieved — Hydrostatic Line The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Equilibrium Pore Pressure (Ueq) Assumed Ueq
Dissipation, Ueq achieved
Dissipation, Ueq not achieved — Hydrostatic Line The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

 \bigcirc

Advanced Cone Penetration Test Plots

The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes

Soil Behavior Type (SBT) Scatter Plots

CONETEC Delve Underground

Job No: 23-56-25414 Date: 2023-02-21 09:10 Site: FORTAG Phase 1 Canyon Del Rey SR218 Segment

Sounding: CPT-1A Cone: 795:T1500F15U35

CONETEC Delve Underground

Qtn Chart (PKR 2009)

Job No: 23-56-25414 Date: 2023-02-21 11:57 Site: FORTAG Phase 1 Canyon Del Rey SR218 Segment

Sounding: CPT-1B Cone: 795:T1500F15U35

1000 9 100-100 qt (bar) Qtn 10.0-10.0 2 1.0-**0.10** 1.0-0.0 1.0 10.0 Fr (%) **Depth Ranges** Legend >0.0 to 7.5 ft Sensitive, Fir >7.5 to 15.0 ft Organic Soils >15.0 to 22.5 ft Clays >22.5 to 30.0 ft Silt Mixtures >30.0 to 37.5 ft Sand Mixture >37.5 to 45.0 ft Sands >45.0 to 52.5 ft Gravelly San

>52.5 to 60.0 ft

>60.0 to 67.5 ft

● >67.5 to 75.0 ft

○ >75.0 ft

Legend	Legend
Sensitive, Fine Grained	Sen:
Organic Soils	📕 Orga
Clays	Clay
Silt Mixtures	Silty
Sand Mixtures	Clay
Sands	Silt Silt
Gravelly Sand to Sand	San
Stiff Sand to Clayey Sand	Silty
Very Stiff Fine Grained	San San
	Grav
	Ctiff

- dy Silt
- Sand/Sand
- d
- velly Sand
- Stiff Fine Grained
- Cemented Sand

Legend

- CCS (Cont. sensitive clay like) CC (Cont. clay like) TC (Cont. transitional) SC (Cont. sand like) CD (Dil. clay like)
- TD (Dil. transitional)
- SD (Dil. sand like)

CONETEC Delve Underground

Job No: 23-56-25414 Date: 2023-02-21 07:18 Site: FORTAG Phase 1 Canyon Del Rey SR218 Segment

Sounding: CPT-2 Cone: 795:T1500F15U35

Pore Pressure Dissipation Summary and Pore Pressure Dissipation Plots

Job No: Client: Project: Start Date: End Date: 23-56-25414 Delve Underground FORTAG Phase 1 Canyon Del Rey SR218 Segment 21-Feb-2023 21-Feb-2023

CPTu PORE PRESSURE DISSIPATION SUMMARY

Sounding ID	File Name	Cone Area (cm ²)	Duration (s)	Test Depth (ft)	Estimated Equilibrium Pore Pressure U _{eq} (ft)	Calculated Phreatic Surface (ft)
CPT-1B	23-56-25414_CP03B	15	710	25.59	8.0	17.6
CPT-2	23-56-25414_CP04	15	435	17.80	3.2	14.6
CPT-2	23-56-25414_CP04	15	475	28.71	13.4	15.3

CONETEC Delve Underground

 Job No: 23-56-25414
 Sounding: CPT-7

 Date: 02/21/2023 11:57
 Cone: 795:T1500

 Site: FORTAG Phase 1 Canyon Del Rey SR218 Segment

Sounding: CPT-1B Cone: 795:T1500F15U35 Area=15 cm²

CONETEC Delve Underground

Job No: 23-56-25414 Date: 02/21/2023 07:18 Site: FORTAG Phase 1 Canyon Del Rey SR218 Segment

Sounding: CPT-2 Cone: 795:T1500F15U35 Area=15 cm²

CONETEC Delve Underground

Job No: 23-56-25414 Date: 02/21/2023 07:18 Site: FORTAG Phase 1 Canyon Del Rey SR218 Segment

Sounding: CPT-2 Cone: 795:T1500F15U35 Area=15 cm²

Methodology Statements and Data File Formats

METHODOLOGY STATEMENTS

CONE PENETRATION TEST (CPTu) - eSeries

Cone penetration tests (CPTu) are conducted using an integrated electronic piezocone penetrometer and data acquisition system manufactured by Adara Systems Ltd., a subsidiary of ConeTec.

ConeTec's piezocone penetrometers are compression type designs in which the tip and friction sleeve load cells are independent and have separate load capacities. The piezocones use strain gauged load cells for tip and sleeve friction and a strain gauged diaphragm type transducer for recording pore pressure. The piezocones also have a platinum resistive temperature device (RTD) for monitoring the temperature of the sensors, an accelerometer type dual axis inclinometer and two geophone sensors for recording seismic signals. All signals are amplified and measured with minimum sixteen-bit resolution down hole within the cone body, and the signals are sent to the surface using a high bandwidth, error corrected digital interface through a shielded cable.

ConeTec penetrometers are manufactured with various tip, friction and pore pressure capacities in both 10 cm² and 15 cm² tip base area configurations in order to maximize signal resolution for various soil conditions. The specific piezocone used for each test is described in the CPT summary table. The 15 cm² penetrometers do not require friction reducers as they have a diameter larger than the deployment rods. The 10 cm² piezocones use a friction reducer consisting of a rod adapter extension behind the main cone body with an enlarged cross sectional area (typically 44 millimeters diameter over a length of 32 millimeters with tapered leading and trailing edges) located at a distance of 585 millimeters above the cone tip.

The penetrometers are designed with equal end area friction sleeves, a net end area ratio of 0.8 and cone tips with a 60 degree apex angle.

All ConeTec piezocones can record pore pressure at various locations. Unless otherwise noted, the pore pressure filter is located directly behind the cone tip in the " u_2 " position (ASTM Type 2). The filter is six millimeters thick, made of porous plastic (polyethylene) having an average pore size of 125 microns (90-160 microns). The function of the filter is to allow rapid movements of extremely small volumes of water needed to activate the pressure transducer while preventing soil ingress or blockage.

The piezocone penetrometers are manufactured with dimensions, tolerances and sensor characteristics that are in general accordance with the current ASTM D5778 standard. ConeTec's calibration criteria also meets or exceeds those of the current ASTM D5778 standard. An illustration of the piezocone penetrometer is presented in Figure CPTu.

Figure CPTu. Piezocone Penetrometer (15 cm²)

The ConeTec data acquisition system consists of a Windows based computer, signal interface box, and power supply. The signal interface combines depth increment signals, seismic trigger signals and the downhole digital data. This combined data is then sent to the Windows based computer for collection and presentation. The data is recorded at fixed depth increments using a depth encoder that is either portable or integrated into the rig. The typical recording interval is 2.5 centimeters; custom recording intervals are possible.

The system displays the CPTu data in real time and records the following parameters to a storage media during penetration:

- Depth
- Uncorrected tip resistance (q_c)
- Sleeve friction (f)
- Dynamic pore pressure (u)
- Additional sensors such as resistivity, passive gamma, ultra violet induced fluorescence, if applicable

All testing is performed in accordance to ConeTec's CPTu operating procedures which are in general accordance with the current ASTM D5778 standard.

Prior to the start of a CPTu sounding a suitable cone is selected, the cone and data acquisition system are powered on, the pore pressure system is saturated with silicone oil and the baseline readings are recorded with the cone hanging freely in a vertical position.

The CPTu is conducted at a steady rate of two centimeters per second, within acceptable tolerances. Typically one meter length rods with an outer diameter of 1.5 inches are added to advance the cone to the sounding termination depth. After cone retraction final baselines are recorded.

Additional information pertaining to ConeTec's cone penetration testing procedures:

- Each filter is saturated in silicone oil under vacuum pressure prior to use
- · Baseline readings are compared to previous readings
- Soundings are terminated at the client's target depth or at a depth where an obstruction is encountered, excessive rod flex occurs, excessive inclination occurs, equipment damage is likely to take place, or a dangerous working environment arises
- Differences between initial and final baselines are calculated to ensure zero load offsets have not occurred and to ensure compliance with ASTM standards

The interpretation of piezocone data for this report is based on the corrected tip resistance (q_t) , sleeve friction (f_s) and pore water pressure (u). The interpretation of soil type is based on the correlations developed by Robertson, P.K., 2010. The Soil Behavior Type (SBT) classification chart developed by Robertson, P.K., 2010 is presented in Figure SBT. It should be noted that it is not always possible to accurately identify a soil behavior type based on these parameters. In these situations, experience, judgment and an assessment of other parameters may be used to infer soil behavior type.

Non-normalized Classification Chart - Robertson 2010

Figure SBT. Non-Normalized Soil Behavior Type Classification Chart (SBT)

The recorded tip resistance (q_c) is the total force acting on the piezocone tip divided by its base area. The tip resistance is corrected for pore pressure effects and termed corrected tip resistance (q_t) according to the following expression presented in Robertson et al. (1986):

$q_t = q_c + (1-a) \cdot u_2$

where: q, is the corrected tip resistance

q is the recorded tip resistance

u₂ is the recorded dynamic pore pressure behind the tip (u₂ position)

a is the Net Area Ratio for the piezocone (0.8 for ConeTec probes)

The sleeve friction (f_s) is the frictional force on the sleeve divided by its surface area. As all ConeTec piezocones have equal end area friction sleeves, pore pressure corrections to the sleeve data are not required.

The dynamic pore pressure (u) is a measure of the pore pressures generated during cone penetration. To record equilibrium pore pressure, the penetration must be stopped to allow the dynamic pore pressures to stabilize. The rate at which this occurs is predominantly a function of the permeability of the soil and the diameter of the cone.

The friction ratio (Rf) is a calculated parameter. It is defined as the ratio of sleeve friction to the tip resistance expressed as a percentage. Generally, saturated cohesive soils have low tip resistance, high friction ratios and generate large excess pore water pressures. Cohesionless soils have higher tip resistances, lower friction ratios and do not generate significant excess pore water pressure.

For additional information on CPTu interpretations and calculated geotechnical parameters, refer to Robertson et al. (1986), Lunne et al. (1997), Robertson (2009), Mayne (2013, 2014) and Mayne and Peuchen (2012).

REFERENCES

ASTM D5778-20, 2020, "Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils", ASTM International, West Conshohocken, PA. DOI: 10.1520/D5778-20.

Lunne, T., Robertson, P.K. and Powell, J. J. M., 1997, "Cone Penetration Testing in Geotechnical Practice", Blackie Academic and Professional.

Mayne, P.W., 2013, "Evaluating yield stress of soils from laboratory consolidation and in-situ cone penetration tests", Sound Geotechnical Research to Practice (Holtz Volume) GSP 230, ASCE, Reston/VA: 406-420. DOI: 10.1061/9780784412770.027.

Mayne, P.W. and Peuchen, J., 2012, "Unit weight trends with cone resistance in soft to firm clays", Geotechnical and Geophysical Site Characterization 4, Vol. 1 (Proc. ISC-4, Pernambuco), CRC Press, London: 903-910.

Mayne, P.W., 2014, "Interpretation of geotechnical parameters from seismic piezocone tests", CPT'14 Keynote Address, Las Vegas, NV, May 2014.

Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J., 1986, "Use of Piezometer Cone Data", Proceedings of InSitu 86, ASCE Specialty Conference, Blacksburg, Virginia.

Robertson, P.K., 2009, "Interpretation of cone penetration tests – a unified approach", Canadian Geotechnical Journal, Volume 46: 1337-1355. DOI: 10.1139/T09-065.

Robertson, P.K., 2010. Soil behavior type from the CPT: an update. 2nd International Symposium on Cone Penetration Testing, CPT'10, Huntington Beach, CA, USA

PORE PRESSURE DISSIPATION TEST

The cone penetration test is halted at specific depths to carry out pore pressure dissipation (PPD) tests, shown in Figure PPD-1. For each dissipation test the cone and rods are decoupled from the rig and the data acquisition system measures and records the variation of the pore pressure (u) with time (t).

Figure PPD-1. Pore pressure dissipation test setup

Pore pressure dissipation data can be interpreted to provide estimates of ground water conditions, permeability, consolidation characteristics and soil behavior.

The typical shapes of dissipation curves shown in Figure PPD-2 are very useful in assessing soil type, drainage, in situ pore pressure and soil properties. A flat curve that stabilizes quickly is typical of a freely draining sand. Undrained soils such as clays will typically show positive excess pore pressure and have long dissipation times. Dilative soils will often exhibit dynamic pore pressures below equilibrium that then rise over time. Overconsolidated fine-grained soils will often exhibit an initial dilatory response where there is an initial rise in pore pressure before reaching a peak and dissipating.

Figure PPD-2. Pore pressure dissipation curve examples

In order to interpret the equilibrium pore pressure (u_{eq}) and the apparent phreatic surface, the pore pressure should be monitored until such time as there is no variation in pore pressure with time as shown for each curve in Figure PPD-2.

CONE PENETRATION DIGITAL FILE FORMATS - eSeries

CPT Data Files (COR Extension)

ConeTec CPT data files are stored in ASCII text files that are readable by almost any text editor. ConeTec file names start with the job number (which includes the two digit year number) an underscore as a separating character, followed by two letters based on the type of test and the sounding ID. The last character position is reserved for an identifier letter (such as b, c, d etc) used to uniquely distinguish multiple soundings at the same location. The CPT sounding file has the extension COR. As an example, for job number 21-02-00001 the first CPT sounding will have file name 21-02-00001_CP01.COR

The sounding (COR) file consists of the following components:

- 1. Two lines of header information
- 2. Data records
- 3. End of data marker
- 4. Units information

Header Lines

- Line 1: Columns 1-6 may be blank or may indicate the version number of the recording software Columns 7-21 contain the sounding Date and Time (Date is MM:DD:YY) Columns 23-38 contain the sounding Operator Columns 51-100 contain extended Job Location information
- Line 2: Columns 1-16 contain the Job Location Columns 17-32 contain the Cone ID Columns 33-47 contain the sounding number Columns 51-100 may contain extended sounding ID information

Data Records

The data records contain 4 or more columns of data in floating point format. A comma and spaces separate each data item:

Column 1: Sounding Depth (meters)

Column 2: Tip (q_c) , recorded in units selected by the operator

Column 3: Sleeve ($\rm f_{s}),$ recorded in units selected by the operator

Column 4: Dynamic pore pressure (u), recorded in units selected by the operator

Column 5: Empty or may contain other requested data such as Gamma, Resistivity or UVIF data

End of Data Marker

After the last line of data there is a line containing an ASCII 26 (CTL-Z) character (small rectangular shaped character) followed by a newline (carriage return / line feed). This is used to mark the end of data.

Units Information

The last section of the file contains information about the units that were selected for the sounding. A separator bar makes up the first line. The second line contains the type of units used for depth, q_c , f_s and u. The third line contains the conversion values required for ConeTec's software to convert the recorded data to an internal set of base units (bar for q_c , bar for f_s and meters for u). Additional lines intended for internal ConeTec use may appear following the conversion values.

CPT Data Files (XLS Extension)

Excel format files of ConeTec CPT data are also generated from corresponding COR files. The XLS files have the same base file name as the COR file with a -BSC suffix. The information in the file is presented in table format and contains additional information about the sounding such as coordinate information, and tip net area ratio.

The BSCI suffix is given to XLS files which are enhanced versions of the BSC files and include the same data records in addition to inclination data collected for each sounding.

CPT Dissipation Files (XLS Extension)

Pore pressure dissipation files are provided in Excel format and contain each dissipation trace that exceeds a minimum duration (selected during post-processing) formatted column wise within the spreadsheet. The first column (Column A) contains the time in seconds and the second column (Column B) contains the time in minutes. Subsequent columns contain the dissipation trace data. The columns extend to the longest trace of the data set.

Detailed header information is provided at the top of the worksheet. The test depth in meters and feet, the number of points in the trace and the particular units are all presented at the top of each trace column.

CPT Dissipation files have the same naming convention as the CPT sounding files with a "-PPD" suffix.

Data Records

Each file will contain dissipation traces that exceed a minimum duration (selected during post-processing) in a particular column. The dissipation pore pressure values are typically recorded at varying time intervals throughout the trace; rapidly to start and increasing as the duration of the test lengthens. The test depth in meters and feet, the number of points in the trace and the trace number are identified at the top of each trace column.

Cone Type Designations

Cone ID	Cone Description	Tip Cross Sect. Area (cm²)	Tip Capacity (bar)	Sleeve Area (cm²)**	Sleeve Capacity (bar)	Pore Pressure Capacity (bar)
EC###	A15T1500F15U35	15	1500	225	15	35
EC###	A15T375F10U35	15	375	225	10	35
EC###	A10T1000F10U35	10	1000	150	10	35

refers to the Cone ID number **Outer Cylindrical Area

Description of Methods for Calculated CPT Geotechnical Parameters

CALCULATED CPT GEOTECHNICAL PARAMETERS

A Detailed Description of the Methods Used in ConeTec's CPT Geotechnical Parameter Calculation and Plotting Software

Revision SZW-Rev 14

Revised November 26, 2019 Prepared by Jim Greig, M.A.Sc, P.Eng (BC)

Limitations

The geotechnical parameter output was prepared specifically for the site and project named in the accompanying report subject to objectives, site conditions and criteria provided to ConeTec by the client. The output may not be relied upon by any other party or for any other site without the express written permission of ConeTec Group (ConeTec) or any of its affiliates. For this project, ConeTec has provided site investigation services, prepared factual data reporting and produced geotechnical parameter calculations consistent with current best practices. No other warranty, expressed or implied, is made.

To understand the calculations that have been performed and to be able to reproduce the calculated parameters the user is directed to the basic descriptions for the methods in this document and the detailed descriptions and their associated limitations and appropriateness in the technical references cited for each parameter.

ConeTec's Calculated CPT Geotechnical Parameters as of November 26, 2019

ConeTec's CPT parameter calculation and plotting routine provides a tabular output of geotechnical parameters based on current published CPT correlations and is subject to change to reflect the current state of practice. Due to drainage conditions and the basic assumptions and limitations of the correlations, not all geotechnical parameters provided are considered applicable for all soil types. The results are presented only as a guide for geotechnical use and should be carefully examined for consideration in any geotechnical design. Reference to current literature is strongly recommended. ConeTec does not warranty the correctness or the applicability of any of the geotechnical parameters calculated by the program and does not assume liability for any use of the results in any design or review. For verification purposes we recommend that representative hand calculations be done for any parameter that is critical for design purposes. The end user of the parameter output should also be fully aware of the techniques and the limitations of any method used by the program. The purpose of this document is to inform the user as to which methods were used and to direct the end user to the appropriate technical papers and/or publications for further reference.

The geotechnical parameter output was prepared specifically for the site and project named in the accompanying report subject to objectives, site conditions and criteria provided to ConeTec by the client. The output may not be relied upon by any other party or for any other site without the express written permission of ConeTec Group (ConeTec) or any of its affiliates.

The CPT calculations are based on values of tip resistance, sleeve friction and pore pressures considered at each data point or averaged over a user specified layer thickness (e.g. 0.20 m). Note that q_t is the tip resistance corrected for pore pressure effects and q_c is the recorded tip resistance. The corrected tip resistance (corrected using u_2 pore pressure values) is used for all of the calculations. Since all ConeTec cones have equal end area friction sleeves pore pressure corrections to sleeve friction, f_s , are not required.

The tip correction is: $q_t = q_c + (1-a) \cdot u_2$ (consistent units are implied) where: q_t is the corrected tip resistance q_c is the recorded tip resistance u_2 is the recorded dynamic pore pressure behind the tip (u_2 position)

a is the Net Area Ratio for the cone (typically 0.80 for ConeTec cones)

The total stress calculations are based on soil unit weight values that have been assigned to the Soil Behavior Type (SBT) zones, from a user defined unit weight profile, by using a single uniform value throughout the profile, through unit weight estimation techniques described in various technical papers or from a combination of these methods. The parameter output files indicate the method(s) used.

Effective vertical overburden stresses are calculated based on a hydrostatic distribution of equilibrium pore pressures below the water table or from a user defined equilibrium pore pressure profile (typically obtained from CPT dissipation tests) or a combination of the two. For over water projects the stress effects of the column of water above the mudline have been taken into account as has the appropriate unit weight of water. How this is done depends on where the instruments were zeroed (i.e. on deck or at the mudline). The parameter output files indicate the method(s) used.

A majority of parameter calculations are derived or driven by results based on material types as determined by the various soil behavior type charts depicted in Figures 1 through 5. The parameter output files indicate the method(s) used.

The Soil Behavior Type classification chart shown in Figure 1 is the classic non-normalized SBT Chart developed at the University of British Columbia and reported in Robertson, Campanella, Gillespie and Greig (1986). Figure 2 shows the original normalized (linear method) SBT chart developed by Robertson (1990). The Bq classification charts shown in Figures 3a and 3b incorporate pore pressures into the SBT classification and are based on the methods described in Robertson (1990). Many of these charts have been summarized in Lunne, Robertson and Powell (1997). The

Jefferies and Davies SBT chart shown in Figure 3c is based on the techniques discussed in Jefferies and Davies (1993) which introduced the concept of the Soil Behavior Type Index parameter, I_c. Please note that the I_c parameter developed by Robertson and Fear (1995) and Robertson and Wride (1998) is similar in concept but uses a slightly different calculation method than that used by Jefferies and Davies (1993) as the latter incorporates pore pressure in their technique through the use of the Bq parameter. The normalized Qtn SBT chart shown in Figure 4 is based on the work by Robertson (2009) utilizing a variable stress ratio exponent, n, for normalization based on a slightly modified redefinition and iterative approach for I_c. The boundary curves drawn on the chart are based on the work described in Robertson (2010).

Figure 5 shows a revised behavior based chart by Robertson (2016) depicting contractive-dilative zones. As the zones represent material behavior rather than soil gradation ConeTec has chosen a set of zone colors that are less likely to be confused with material type colors from previous SBT charts. These colors differ from those used by Dr. Robertson.

Figure 1. Non-Normalized Soil Behavior Type Classification Chart (SBT)

Figure 2. Normalized Soil Behavior Type Classification Chart (SBTn)

Figure 3. Alternate Soil Behavior Type Charts

Figure 4. Normalized Soil Behavior Type Chart using Qtn (SBT Qtn)

Figure 5. Modified SBTn Behavior Based Chart

Details regarding the geotechnical parameter calculations are provided in Tables 1a and 1b. The appropriate references cited are listed in Table 2. Non-liquefaction specific parameters are detailed in Table 1a and liquefaction specific parameters are detailed in Table 1b.

Where methods are based on charts or techniques that are too complex to describe in this summary the user should refer to the cited material. Specific limitations for each method are described in the cited material.

Where the results of a calculation/correlation are deemed *'invalid'* the value will be represented by the text strings "-9999", "-9999.0", the value 0.0 (Zero) or an empty cell. Invalid results will occur because of (and not limited to) one or a combination of:

- 1. Invalid or undefined CPT data (e.g. drilled out section or data gap).
- 2. Where the calculation method is inappropriate, for example, drained parameters in a material behaving as an undrained material (and vice versa).
- 3. Where input values are beyond the range of the referenced charts or specified limitations of the correlation method.
- 4. Where pre-requisite or intermediate parameter calculations are invalid.

The parameters selected for output from the program are often specific to a particular project. As such, not all of the calculated parameters listed in Table 1 may be included in the output files delivered with this report.

The output files are typically provided in Microsoft Excel XLS or XLSX format. The ConeTec software has several options for output depending on the number or types of calculated parameters desired or requested by the client. Each output file is named using the original COR file base name followed by a three or four letter indicator of the output set selected (e.g. BSC, TBL, NLI, NL2, IFI, IFI2) and possibly followed by an operator selected suffix identifying the characteristics of the particular calculation run.

Calculated Parameter	Description	Equation	Ref
Depth	Mid Layer Depth (where calculations are done at each point then Mid Layer Depth = Recorded Depth)	[Depth (Layer Top) + Depth (Layer Bottom)]/ 2.0	CK*
Elevation	Elevation of Mid Layer based on sounding collar elevation supplied by client or through site survey	Elevation = Collar Elevation - Depth	CK*
Avg qc	Averaged recorded tip value (q_c)	$Avgqc = \frac{1}{n} \sum_{i=1}^{n} q_{c}$ n=1 when calculations are done at each point	СК*
Avg qt	Averaged corrected tip (q _t) where: $q_t = q_c + (1-a) \bullet u_2$	$Avgqt = \frac{1}{n} \sum_{i=1}^{n} q_i$ n=1 when calculations are done at each point	1
Avg fs	Averaged sleeve friction (fs)	Avgfs = $\frac{1}{n} \sum_{i=1}^{n} fs$ n=1 when calculations are done at each point	CK*
Avg Rf	Averaged friction ratio (R _f) where friction ratio is defined as: $Rf = 100\% \bullet \frac{fs}{q_r}$	$AvgRf = 100\% \cdot \frac{Avgfs}{Avgqt}$ n=1 when calculations are done at each point	CK*
Avg u	Averaged dynamic pore pressure (u)	$Avgu = \frac{1}{n} \sum_{i=1}^{n} u_i$ n=1 when calculations are done at each point	CK*

Table 1a. CPT Parameter Calculation Methods – Non liquefaction Parameters

Calculated Parameter	Description	Equation	Ref
Avg Res	Averaged Resistivity (this data is not always available since it is a specialized test requiring an additional module)	$AvgRes = \frac{1}{n} \sum_{i=1}^{n} Resistivity_i$ n=1 when calculations are done at each point	СК*
Avg UVIF	Averaged UVIF ultra-violet induced fluorescence (this data is not always available since it is a specialized test requiring an additional module)	$AvgUVIF = \frac{1}{n} \sum_{i=1}^{n} UVIF_{i}$ n=1 when calculations are done at each point	СК*
Avg Temp	Averaged Temperature (this data is not always available since it requires specialized calibrations)	AvgTemp = $\frac{1}{n}\sum_{i=1}^{n} Temperature_i$ n=1 when calculations are done at each point	СК*
Avg Gamma	Averaged Gamma Counts (this data is not always available since it is a specialized test requiring an additional module)	AvgGamma = $\frac{1}{n}\sum_{i=1}^{n} Gamma_i$ n=1 when calculations are done at each point	СК*
SBT	Soil Behavior Type as defined by Robertson et al 1986 (often referred to as Robertson and Campanella, 1986)	See Figure 1	1, 5
SBTn	Normalized Soil Behavior Type as defined by Robertson 1990 (linear normalization)	See Figure 2	2, 5
SBT-Bq	Non-normalized Soil Behavior type based on the Bq parameter	See Figure 3	1, 2, 5
SBT-Bqn	Normalized Soil Behavior based on the Bq parameter	See Figure 3	2, 5
SBT-JandD	Soil Behavior Type as defined by Jeffries and Davies	See Figure 3	7
SBT Qtn	Soil Behavior Type as defined by Robertson (2009) using a variable stress ratio exponent for normalization based on ${\sf I}_{\sf c}$	See Figure 4	15
Modified SBTn (contractive /dilative)	Modified SBTn chart as defined by Robertson (2016) indicating zones of contractive/dilative behavior.	See Figure 5	30
Unit Wt.	 Unit Weight of soil determined from one of the following user selectable options: 1) uniform value 2) value assigned to each SBT zone 3) value assigned to each SBTn zone 4) value assigned to SBTn zone as determined from Robertson and Wride (1998) based on q_{c1n} 5) values assigned to SBT QTN zones 6) Mayne fs (sleeve friction) method 7) Robertson 2010 method 8) user supplied unit weight profile The last option may co-exist with any of the other options 	See references	3, 5, 15, 21, 24, 29

Calculated Parameter	Description	Equation	Ref
TStress Øv	Total vertical overburden stress at Mid Layer Depth A layer is defined as the averaging interval specified by the user where depths are reported at their respective mid-layer depth. For data calculated at each point layers are defined using the recorded depth as the mid-point of the layer. Thus, a layer starts half-way between the previous depth and the current depth unless this is the first point in which case the layer start is at zero depth. The layer bottom is half-way from the current depth to the next depth unless it is the last data point. Defining layers affects how stresses are calculated since the unit weight attributed to a data point is used throughout the entire layer. This means that to calculate the stresses the total stress at the top and bottom of a layer are required. The stress at mid layer is determined by adding the incremental stress from the layer top to the mid-layer depth. The stress at the layer bottom becomes the stress at the top of the subsequent layer. Stresses are NOT calculated from mid-point to mid-point. For over-water work the total stress due to the column of water above the mud line is taken into account where appropriate.	$TStress = \sum_{i=1}^{n} \gamma_i h_i$ where γ_i is layer unit weight h_i is layer thickness	CK*
EStress σ_v	Effective vertical overburden stress at mid-layer depth	$\sigma_{v}' = \sigma_{v} - u_{eq}$	CK*
Equil u u _{eq} or u ₀	Equilibrium pore pressure determined from one of the following user selectable options: hydrostatic below water table user supplied profile combination of those above When a user supplied profile is used/provided a linear interpolation is performed between equilibrium pore pressures defined at specific depths. If the profile values start below the water table then a linear transition from zero pressure at the water table to the first defined pointed is used. Equilibrium pore pressures may come from dissipation tests, adjacent piezometers or other sources. Occasionally, an extra equilibrium point ("assumed value") will be provided in the profile that does not come from a recorded value to smooth out any abrupt changes or to deal with material interfaces. These "assumed" values will be indicated on our plots and in tabular summaries.	For hydrostatic option: $u_{eq} = \gamma_w \cdot (D - D_{wt})$ where u_{eq} is equilibrium pore pressure γ_w is unit weight of water D is the current depth D_{wt} is the depth to the water table	CK*
Ko	Coefficient of earth pressure at rest, K ₀	$K_o = (1 - \sin \Phi') OCR^{\sin \Phi'}$	17
Cn	Overburden stress correction factor used for $(N_1)_{60}$ and older CPT parameters	$C_n = (P_a/\sigma_v')^{0.5}$ where $0.0 < C_n < 2.0$ (user adjustable, typically 1.7) P_a is atmospheric pressure (100 kPa)	12
Cq	Overburden stress normalizing factor	$C_q = 1.8 / (0.8 + (\sigma_v'/P_a))$ where $0.0 < C_q < 2.0$ (user adjustable) P_a is atmospheric pressure (100 kPa)	3, 12

Calculated Parameter	Description	Equation	Ref
N ₆₀	SPT N value at 60% energy calculated from q ₁ /N ratios assigned to each SBT zone. This method has abrupt N value changes at zone boundaries.	See Figure 1	5
(N1)60	SPT N_{60} value corrected for overburden pressure	$(N_1)_{60} = C_n \bullet N_{60}$	4
N60Ic	SPT N_{60} values based on the I_c parameter [as defined by Roberston and Wride 1998 (5), or by Robertson 2009 (15)].	$(q_t/P_a)/N_{60} = 8.5 (1 - l_c/4.6)$ $(q_t/P_a)/N_{60} = 10^{(1.1268 - 0.2817lc)}$ Pa being atmospheric pressure	5 15, 31
(N1)60Ic	SPT N_{60} value corrected for overburden pressure (using $N_{60}\ I_c)_{.}$ User has 3 options.	1) $(N_1)_{60}lc = C_n \cdot (N_{60} l_c)$ 2) $q_{c1n}/(N_1)_{60}l_c = 8.5 (1 - l_c/4.6)$ 3) $(Q_{tn})/(N_1)_{60}l_c = 10^{(1.1268 - 0.2817lc)}$	4 5 15, 31
Su or Su (Nkt)	Undrained shear strength based on q_t S_u factor N_{kt} is user selectable	$Su = \frac{qt - \sigma_v}{N_{kt}}$	1, 5
Su or Su (Ndu)	Undrained shear strength based on pore pressure S_u factor $N_{\Delta u}$ is user selectable	$Su = \frac{u_2 - u_{eq}}{N_{Au}}$	1, 5
Dr	Relative Density determined from one of the following user selectable options: a) Ticino Sand b) Hokksund Sand c) Schmertmann (1978) d) Jamiolkowski (1985) - All Sands e) Jamiolkowski et al (2003) (various compressibilities, K _o)	See reference (methods a through d) Jamiolkowski et al (2003) reference	5 14
РНI ф	 Friction Angle determined from one of the following user selectable options (methods a through d are for sands and method e is for silts and clays): a) Campanella and Robertson b) Durgunoglu and Mitchel c) Janbu d) Kulhawy and Mayne e) NTH method (clays and silts) 	See appropriate reference	5 5 11 23
Delta U/qt	Differential pore pressure ratio (older parameter used before B _q was established)	$= \frac{\Delta u}{qt}$ where: $\Delta u = u - u_{eq}$ and $u = dynamic pore pressure$ $u_{eq} = equilibrium pore pressure$	CK*
Bq	Pore pressure parameter	$Bq = \frac{\Delta u}{qt - \sigma_v}$ where : $\Delta u = u - u_{eq}$ and $u = dynamic pore pressure$ $u_{eq} = equilibrium pore pressure$	1, 2, 5
Net qt or qtNet	Net tip resistance (used in many subsequent correlations)	$qt-\sigma_v$	СК*
qe	Effective tip resistance (using the dynamic pore pressure u ₂ and not equilibrium pore pressure)	$qt-u_2$	СК*

Calculated Parameter	Description	Equation	Ref
qeNorm	Normalized effective tip resistance	$\frac{qt-u_2}{\sigma_v}$	СК*
Q _t or Norm: Qt	Normalized q_t for Soil Behavior Type classification as defined by Robertson (1990) using a linear stress normalization. Note this is different from Q_{tn} .	$Qt = \frac{qt - \sigma_v}{\sigma_v}$	2, 5
F _r or Norm: Fr	Normalized Friction Ratio for Soil Behavior Type classification as defined by Robertson (1990)	$Fr = 100\% \cdot \frac{fs}{qt - \sigma_{\nu}}$	2, 5
Q(1-Bq)	Q(1-Bq) grouping as suggested by Jefferies and Davies for their classification chart and the establishment of their Ic parameter	$Q \cdot (1 - Bq)$ where Bq is defined as above and Q is the same as the normalized tip resistance, Q _t , defined above	6, 7
qc1	Normalized tip resistance, qc1, using a fixed stress ratio exponent, n (this method has stress units)	$q_{c1} = q_t \cdot (Pa/\sigma_v')^{0.5}$ where: Pa = atmospheric pressure	21
qc1 (0.5)	Normalized tip resistance, qc1, using a fixed stress ratio exponent, n (this method is unit-less)	q_{c1} (0.5)= $(q_t/P_o) \cdot (Pa/\sigma_t')^{0.5}$ where: Pa = atmospheric pressure	5
qc1 (Cn)	Normalized tip resistance, q_{c1} , based on C_n (this method has stress units)	$q_{c1}(Cn) = C_n * q_t$	5, 12
qc1 (Cq)	Normalized tip resistance, q_{c1} , based on C_q (this method has stress units)	$q_{c1}(Cq) = C_q * q_t$ (some papers use q_c)	5, 12
qc1n	normalized tip resistance, q_{c1n} , using a variable stress ratio exponent, n (where n=0.0, 0.70, 1.0) (this method is unit-less)	$q_{c1n} = (q_t / P_a)(P_a / \sigma_{v'})^n$ where: $P_a = atm$. Pressure and n varies as described below	3, 5
اد or Ic (RW1998)	Soil Behavior Type Index as defined by Robertson and Fear (1995) and Robertson and Wride (1998) for estimating grain size characteristics and providing smooth gradational changes across the SBTn chart	$I_{c} = [(3.47 - log_{10}Q)^{2} + (log_{10} Fr + 1.22)^{2}]^{0.5}$ Where: $Q = \left(\frac{qt - \sigma_{v}}{P_{a}}\right) \left(\frac{P_{a}}{\sigma_{v}}\right)^{n}$ Or $Q = q_{cln} = \left(\frac{qt}{P_{a}}\right) \left(\frac{P_{a}}{\sigma_{v}}\right)^{n}$ depending on the iteration in determining I_{c} And Fr is in percent $P_{a} = atmospheric pressure$ n varies between 0.5, 0.70 and 1.0 and is selected in an iterative manner based on the resulting I_{c}	3, 5, 21
ic (PKR 2009)	Soil Behavior Type Index, I _c (PKR 2009) based on a variable stress ratio exponent n, which itself is based on I _c (PKR 2009). An iterative calculation is required to determine Ic (PKR 2009) and its corresponding n (PKR 2009).	l _c (PKR 2009) = [(3.47 − log ₁₀ Q _{tn}) ² + (1.22 + log ₁₀ F _t) ²] ^{0.5}	15

Calculated Parameter	Description	Equation	Ref
n (PKR 2009)	Stress ratio exponent n, based on I _c (PKR 2009). An iterative calculation is required to determine n (PKR 2009) and its corresponding Ic (PKR 2009).	n (PKR 2009) = 0.381 (Ic) + 0.05 (σ_{v}'/P_{a}) – 0.15	15
Qtn (PKR 2009)	Normalized tip resistance using a variable stress ratio exponent based on I_c (PKR 2009) and n (PKR 2009). An iterative calculation is required to determine Qtn (PKR 2009).	$Q_{tn} = [(qt - \sigma_v)/P_a](P_a/\sigma_v')^n$ where $P_a = atmospheric pressure (100 kPa)n = stress ratio exponent described above$	15
FC	Apparent fines content (%)	FC=1.75(lc ^{3.25}) - 3.7 FC=100 for l _c > 3.5 FC=0 for l _c < 1.26 FC = 5% if 1.64 < l _c < 2.6 AND F _r <0.5	3
l₀ Zone	This parameter is the Soil Behavior Type zone based on the I₅ parameter (valid for zones 2 through 7 on SBTn or SBT Qtn charts)	$l_c < 1.31$ Zone = 7 $1.31 < l_c < 2.05$ Zone = 6 $2.05 < l_c < 2.60$ Zone = 5 $2.60 < l_c < 2.95$ Zone = 4 $2.95 < l_c < 3.60$ Zone = 3 $l_c > 3.60$ Zone = 2	3
State Param or State Parameter or ↓	The state parameter index, ψ , is defined as the difference between the current void ratio, e, and the critical void ratio, e _c . Positive ψ - contractive soil Negative ψ - dilative soil This is based on the work by Been and Jefferies (1985) and Plewes, Davies and Jefferies (1992) - vertical effective stress is used rather than a mean normal stress	See reference	6, 8
Yield Stress σ _p '	Yield stress is calculated using the following methods a) General method b) 1^{st} order approximation using q_t Net (clays) c) 1^{st} order approximation using Δu_2 (clays) d) 1^{st} order approximation using q_e (clays)	All stresses in kPa a) $\sigma_{p}' = 0.33 \cdot (q_t - \sigma_v)^{m'} (\sigma_{atm}/100)^{1 \cdot m'}$ where $m' = 1 - \frac{0.28}{1 + (I_c / 2.65)^{25}}$ b) $\sigma_{p}' = 0.33 \cdot (q_t - \sigma_v)$ c) $\sigma_{p}' = 0.54 \cdot (\Delta u_2) \Delta u_2 = u_2 - u_0$ d) $\sigma_{p}' = 0.60 \cdot (q_t - u_2)$	19 20 20 20
OCR OCR(JS1978) OCR(Mayne2014) OCR (qtNet) OCR (deltaU) OCR (deltaU) OCR (qe) OCR (Vs) OCR (PKR2015)	Over Consolidation Ratio based on a) Schmertmann (1978) method involving a plot plot of $S_u/\sigma_{v'}/(S_u/\sigma_{v'})_{NC}$ and OCR b) based on Yield stresses described above c) approximate version based on qtNet d) approximate version based on Δu e) approximate version based on effective tip, q_e f) approximate version based on shear wave velocity, V _s g) based on Qt	a) requires a user defined value for NC Su/P _c ' ratio b through f) based on yield stresses g) OCR = $0.25 \cdot (Qt)^{1.25}$	9 19 20 20 20 18 32

Calculated Parameter	Description	Equation	Ref
Es/qt	Intermediate parameter for calculating Young's Modulus, E, in sands. It is the Y axis of the reference chart.	Based on Figure 5.59 in the reference	5
Es Young's Modulus E	Young's Modulus based on the work done in Italy. There are three types of sands considered in this technique. The user selects the appropriate type for the site from: a) OC Sands b) Aged NC Sands c) Recent NC Sands Each sand type has a family of curves that depend on mean normal stress. The program calculates mean normal stress and linearly interpolates between the two extremes provided in the Es/qt chart. Es is evaluated for an axial strain of 0.1%.	Mean normal stress is evaluated from: $\sigma_{=}^{\cdot} = \frac{1}{3} \left(\sigma_{v}^{\cdot} + \sigma_{h}^{\cdot} + \sigma_{h}^{\cdot} \right)^{3}$ where σ_{v}' = vertical effective stress σ_{h}' = horizontal effective stress and $\sigma_{h} = \kappa_{o} \cdot \sigma_{v}'$ with κ_{o} assumed to be 0.5	5
Delta U/TStress	Differential pore pressure ratio with respect to total stress	$=\frac{\Delta u}{\sigma_{v}} \qquad \text{where: } \Delta u = u - u_{eq}$	СК*
Delta U/Estress, P Value, Excess Pore Pressure Ratio	Differential pore pressure ratio with respect to effective stress. Key parameter (P, Normalized Pore Pressure Parameter, Excess Pore Pressure Ratio) in the Winckler et. al. static liquefaction method.	$=\frac{\Delta u}{\sigma_{\downarrow}} \text{where: } \Delta u = u - u_{eq}$	25, 25a, CK*
Su/EStress	Undrained shear strength ratio with respect to vertical effective overburden stress using the $S_{\rm u}\left(N_{\rm kt}\right)$ method	$= Su(N_{kt}) / \sigma_{v}'$	CK*
Gmax	$G_{\mbox{max}}$ determined from SCPT shear wave velocities (not estimated values)	$G_{max} = \rho V_s^2$ where ρ is the mass density of the soil determined from the estimated unit weights at each test depth	27
qtNet/Gmax	Net tip resistance ratio with respect to the small strain modulus G _{max} determined from SCPT shear wave velocities (not estimated values)	= $(qt - \sigma_v) / G_{max}$ where $G_{max} = \rho V_s^2$ and ρ is the mass density of the soil determined from the estimated unit weights at each test depth	15, 28, 30

*CK – common knowledge

Calculated Parameter	Description	Equation	Ref
Kspt	Equivalent clean sand factor for $(N_1)60$	$K_{SPT} = 1 + ((0.75/30) \cdot (FC - 5))$	10
K _{CPT} or K _C (RW1998)	Equivalent clean sand correction for $q_{\mathtt{clN}}$	$K_{cpt} = 1.0 \text{ for } l_c \le 1.64$ $K_{cpt} = f(l_c) \text{ for } l_c > 1.64 \text{ (see reference)}$ $K_c = -0.403 l_c^4 + 5.581 l_c^3 - 21.63l_c^2 + 33.75 l_c - 17.88$	3, 10
Kc (PKR 2010)	Clean sand equivalent factor to be applied to Q_{tn}	$K_c = 1.0 \text{ for } I_c \le 1.64$ $K_c = -0.403 I_c^4 + 5.581 I_c^3 - 21.63I_c^2 + 33.75 I_c - 17.88$ for I_c > 1.64	16
(N1)60csIC	Clean sand equivalent SPT $(N_1)_{60}I_c$. User has 3 options.	1) $(N_1)_{60cs}Ic = \alpha + \beta((N_1)_{60}I_c)$ 2) $(N_1)_{60cs}Ic = K_{SPT} * ((N_1)_{60}I_c)$ 3) $(q_{c1ncs})/(N_1)_{60cs}I_c = 8.5 (1 - I_c/4.6)$ FC $\leq 5\%$: $\alpha = 0, \beta = 1.0$ FC $\geq 35\%$ $\alpha = 5.0, \beta = 1.2$ $5\% < FC < 35\%$ $\alpha = exp[1.76 - (190/FC^2)]$ $\beta = [0.99 + (FC^{1.5}/1000)]$	10 10 5
Qcincs	Clean sand equivalent q _{c1n}	$q_{cincs} = q_{cin} \cdot K_{cpt}$	3
Qtn,cs (PKR 2010)	Clean sand equivalent for Q_{tn} described above - Q_{tn} being the normalized tip resistance based on a variable stress exponent as defined by Robertson (2009)	$Q_{tn,cs} = Q_{tn} \cdot K_c (PKR \ 2016)$	16
Su(Liq)/ESv	Liquefied shear strength ratio as defined by Olson and Stark	$\frac{Su(Liq)}{\sigma_{v}'} = 0.03 + 0.0143(q_{c1})$ σ_{v}' Note: σ_{v}' and s_{v}' are synonymous	13
Su(Liq)/ESv (PKR 2010)	Liquefied shear strength ratio as defined by Robertson (2010)	$\frac{Su(Liq)}{\sigma_{v}'}$ Based on a function involving $Q_{tn,cs}$	16
Su (Liq) (PKR 2010)	Liquefied shear strength derived from the liquefied shear strength ratio and effective overburden stress		16
Cont/Dilat Tip	Contractive / Dilative qc1 Boundary based on $(N_1)_{60}$	$(\sigma_v')_{boundary} = 9.58 \times 10^{-4} [(N_1)_{60}]^{4.79}$ qc1 is calculated from specified qt(MPa)/N ratio	13
CRR	Cyclic Resistance Ratio (for Magnitude 7.5)	$q_{clncs} < 50$: $CRR_{7.5} = 0.833 [q_{clncs}/1000] + 0.05$ $50 \le q_{clncs} < 160$: $CRR_{7.5} = 93 [q_{clncs}/1000]^3 + 0.08$	10
Кg	Small strain Stiffness Ratio Factor, Kg	[Gmax/qt]/[qc1n ^{-m}] m = empirical exponent, typically 0.75	26

Table 1b. CPT Parameter Calculation Methods – Liquefaction Parameters

Calculated Parameter	Description	Equation	Ref
SP Distance	State Parameter Distance, Winckler static liquefaction method	Perpendicular distance on Qtn chart from plotted point to state parameter Ψ = -0.05 curve	25
URS NP Fr	Normalized friction ratio point on Ψ = -0.05 curve used in SP Distance calculation		25
URS NP Qtn	Normalized tip resistance (Qtn) point on Ψ = -0.05 curve used in SP Distance calculation		25

Table 2. References

No.	Reference
1	Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J., 1986, "Use of Piezometer Cone Data", Proceedings of InSitu 86, ASCE Specialty Conference, Blacksburg, Virginia.
2	Robertson, P.K., 1990, "Soil Classification Using the Cone Penetration Test", Canadian Geotechnical Journal, Volume 27. This includes the discussions and replies.
3	Robertson, P.K. and Wride (Fear), C.E., 1998, "Evaluating cyclic liquefaction potential using the cone penetration test", Canadian Geotechnical Journal, 35: 442-459.
4	Robertson, P.K. and Wride, C.E., 1997, "Cyclic Liquefaction and its Evaluation Based on SPT and CPT", NCEER Workshop Paper, January 22, 1997.
5	Lunne, T., Robertson, P.K. and Powell, J. J. M., 1997, "Cone Penetration Testing in Geotechnical Practice," Blackie Academic and Professional.
6	Plewes, H.D., Davies, M.P. and Jefferies, M.G., 1992, "CPT Based Screening Procedure for Evaluating Liquefaction Susceptibility", 45 th Canadian Geotechnical Conference, Toronto, Ontario, October 1992.
7	Jefferies, M.G. and Davies, M.P., 1993, "Use of CPTu to Estimate equivalent N₀₀", Geotechnical Testing Journal, 16(4): 458-467.
8	Been, K. and Jefferies, M.P., 1985, "A state parameter for sands", Geotechnique, 35(2), 99-112.
9	Schmertmann, 1978, "Guidelines for Cone Penetration Test Performance and Design", Federal Highway Administration Report FHWA-TS-78-209, U.S. Department of Transportation.
10	Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Salt Lake City, 1996, chaired by Leslie Youd.
11	Kulhawy, F.H. and Mayne, P.W., 1990, "Manual on Estimating Soil Properties for Foundation Design, Report No. EL-6800", Electric Power Research Institute, Palo Alto, CA, August 1990, 306 p.
12	Olson, S.M. and Stark, T.D., 2002, "Liquefied strength ratio from liquefied flow failure case histories", Canadian Geotechnical Journal, 39: 951-966.
13	Olson, Scott M. and Stark, Timothy D., 2003, "Yield Strength Ratio and Liquefaction Analysis of Slopes and Embankments", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, August 2003.
14	Jamiolkowski, M.B., Lo Presti, D.C.F. and Manassero, M., 2003, "Evaluation of Relative Density and Shear Strength of Sands from CPT and DMT", Soil Behaviour and Soft Ground Construction, ASCE, GSP NO. 119, 201-238.
15	Robertson, P.K., 2009, "Interpretation of cone penetration tests – a unified approach", Canadian Geotechnical Journal, 46: 1337-1355.
16	Robertson, P.K., 2010, "Evaluation of Flow Liquefaction and Liquefied Strength Using the Cone Penetration Test", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, June 2010.
17	Mayne, P.W. and Kulhawy, F.H., 1982, "Ko-OCR Relationships in Soil", Journal of the Geotechnical Engineering Division, ASCE, Vol. 108, GT6, pp. 851-872.
18	Mayne, P.W., Robertson P.K. and Lunne T., 1998, "Clay stress history evaluated from seismic piezocone tests", Proceedings of the First International Conference on Site Characterization – ISC '98, Atlanta Georgia, Volume 2, 1113-1118.

No.	Reference
19	Mayne, P.W., 2014, "Generalized CPT Method for Evaluating Yield Stress in Soils", Geocharacterization for Modeling and Sustainability (GSP 235: Proc. GeoCongress 2014, Atlanta, GA), ASCE, Reston, Virginia: 1336-1346.
20	Mayne, P.W., 2015, "Geocharacterization by In-Situ Testing", Continuing Education Course, Vancouver, BC, January 6-8, 2015.
21	Robertson, P.K. and Fear, C.E., 1995, "Liquefaction of sands and its evaluation", Proceedings of the First International Conference on Earthquake Engineering, Keynote Lecture IS Tokyo '95, Tokyo Japan, 1995.
22	Mayne, P.W., Peuchen, J. and Boumeester, D., 2010, "Soil unit weight estimation from CPTs", Proceeding of the 2 nd International Symposium on Cone Penetration Testing (CPT '10), Vol 2, Huntington Beach, California; Omnipress: 169-176.
23	Mayne, P.W., 2007, "NCHRP Synthesis 368 on Cone Penetration Test", Transportation Research Board, National Academies Press, Washington, D.C., 118 pages.
24	Mayne, P.W., 2014, "Interpretation of geotechnical parameters from seismic piezocone tests.", Key note address #2, proceedings, 3 rd International Symposium on Cone Penetration Testing (CPT'14, Las Vegas), ISSMGE Technical Committee TC102.
25	Winckler, Christina, Davidson, Richard, Yenne, Lisa, Pilz, Jorgen, 2014, "CPTu-Based State Characterization of Tailings Liquefaction Susceptibility", Tailings and Mine Waste, 2014.
25a	Winckler, Christina, Davidson, Richard, Yenne, Lisa, Pilz, Jorgen, 2014, "CPTu-Based State Characterization of Tailings Liquefaction Susceptibility", Powerpoint presentation, Tailings and Mine Waste, 2014.
26	Schneider, J.A. and Moss, R.E.S., 2011, "Linking cyclic stress and cyclic strain based methods for assessment of cyclic liquefaction triggering in sands", Geotechnique Letters 1, 31-36.
27	Rice, A., 1984, "The Seismic Cone Penetrometer", M.A.Sc. thesis submitted to the University of British Columbia, Dept. of Civil Engineering, Vancouver, BC, Canada.
28	Gillespie, D.G., 1990, "Evaluating Shear Wave Velocity and Pore Pressure Data from the Seismic Cone Penetration Test", Ph.D. thesis submitted to the University of British Columbia, Dept. of Civil Engineering, Vancouver, BC, Canada.
29	Robertson, P.K and Cabal, K.L., 2010, "Estimating soil unit weight from CPT", Proceedings of the 2 nd International Symposium on Cone Penetration Testing (CPT '10), Huntington Beach, California.
30	Robertson, P.K., 2016, "Cone penetration test (CPT)-based soil behaviour type (SBT) classification system – an update", Canadian Geotechnical Journal, July 2016.
31	Robertson, P.K., 2012, "Interpretation of in-situ tests – some insights", Mitchell Lecture, ISC'4, Recife, Brazil.
32	Robertson, P.K., Cabal, K.L. 2015, "Guide to Cone Penetration Testing for Geotechnical Engineering", 6 th Edition.

Appendix E

Project Name: FORTAG SR 218 Undercrossing Bridge and Retaining Wall No. 1

The ARS was based on the USGS' 2014 National Seismic Hazard Map for 975-years return period. (Hazard Model/Edition "Dynamic Conterminous U.S. 2014 (Update)(V4.2.0)") hazard data obtained by using ARS online v3.0.2. Modifications for basin-effects and/or near-fault effects were applied, where applicable.

V_{s30}: 720 feet/sec (220 meters/sec) PGA: 0.49g Mean Moment Magnitude (for PGA): M = 6.75

Appendix F

GHD Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR 218 Segment Del Rey Oaks, California

Project: FORTAG

Location: Del Rey Oaks, CA

CLiq v.3.5.2.8 - CPTU data presentation & interpretation software - Report created on: 3/1/2023, 11:38:25 AM Project file: C:\Users\soe\Box\Jobs\6231.0 TAMC - FORTAG Phase 1 Canyon Del Rey_SR 218 Segment\Project Work\Calculations\Liquefaction\CPTs.clq

CPT: CPT-01

Total depth: 63.40 ft

GHD Transportation Agency for Monterey County FORTAG - Canyon Del Rey/SR 218 Segment Del Rey Oaks, California

Project: FORTAG

Location: Del Rey Oaks, CA

CLiq v.3.5.2.8 - CPTU data presentation & interpretation software - Report created on: 3/1/2023, 11:40:28 AM Project file: C:\Users\soe\Box\Jobs\6231.0 TAMC - FORTAG Phase 1 Canyon Del Rey_SR 218 Segment\Project Work\Calculations\Liquefaction\CPTs.clq

CPT: CPT-02

Total depth: 66.52 ft

Appendix G

	1.071	
Method Name Min FS Spencer 1.143 GLE / Morrenstern-Price 1.071		
	6190.00 lbs/ft	terial Name Color Unit Weizht (lbs/ft3) Strength Type Cohesion (psf) Phi (deg) Ru
		Fill 120 Mohr-Coulomb 0 30
		ayer 1 sand 100 Mohr-Coulomb 0 30
_ o		er 2 sand (L1) 105 Undrained 232
	W Laye	er 2 sand (L2) 105 Undrained 145
	Laye	er 2 sand (L3) 105 Undrained 59
		ayer 3 clay 97 Undrained 650
- °	Laye	er 4 sand (L1) 115 Undrained 331
_ °	Laye	er 4 sand (L2) 115 Undrained 217
	Laye	er 4 sand (L3) 115 Undrained 103
20		ayer 5 clay 105 Undrained 500
	Laye	er 6 sand (L1) 115 Undrained 475
	Laye	er 6 sand (L2) 115 Undrained 336
	Laye	er 6 sand (L3) 115 Undrained 196
- Current Form	Out-Of- Pile La	ayer 7 clay 95 Undrained 400
Name Color Type Application	Spacing Mode Strength Orientation	er 8 sand (L1) 115 Undrained 827
	(ft) (lbs) Laye	er 8 sand (L2) 115 Undrained 635
Soldier Pile/ Active Micro	7.5 Shear O Parallel to Laye	er 8 sand (L3) 115 Undrained 444
pile (Method A)	La	ayer 9 sand 125 Mohr-Coulomb 0 35 0
o	o o Retain	ning Wall No. 2 150 Infinite strength 0
-50	0 50 100	150 200 250
McMILLEN	Project Name TAMC - FORTAG Canyon	Del Rey/SR218 Segement
	6231.0	Liquefiable Layer at El 72.25, kh=0
SLIDEINTERPRET 9.027 ASSOCIATES	April 2023	Del Rey Oaks, California

Layer 2 sand (L2)	105	Undrained	145		
Layer 2 sand (L3)	105	Undrained	59		
Layer 3 clay	97	Undrained	650		
Layer 4 sand (L1)	115	Undrained	331		
Layer 4 sand (L2)	115	Undrained	217		
Layer 4 sand (L3)	115	Undrained	103		
Layer 5 clay	105	Undrained	500		
Layer 6 sand (L1)	115	Undrained	475		
Layer 6 sand (L2)	115	Undrained	336		
Layer 6 sand (L3)	115	Undrained	196		
Layer 7 clay	95	Undrained	400		
Layer 8 sand (L1)	115	Undrained	827		
Layer 8 sand (L2)	115	Undrained	635		
Layer 8 sand (L3)	115	Undrained	444		
Layer 9 sand	125	Mohr-Coulomb	0	35	0
Retaining Wall No. 2	150	Infinite strength			0

Method Name Min FS Spencer 0.986 GLE / Morgenstern-Price 0.918	0.986 6190.00 lbs/ft						► 0.25
100		Vaterial Name Col	lor Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	
		Fill	120	Mohr-Coulomb	0	30	
		Layer 1 sand	100	Mohr-Coulomb	0	30	
		ayer 2 sand (L1)	105	Undrained	232		
		ayer 2 sand (L2)	105	Undrained	145		
		ayer 2 sand (L3)	105	Undrained	59		
		Layer 3 clay	97	Undrained	650		
- P		ayer 4 sand (L1)	115	Undrained	331		
		ayer 4 sand (L2)	115	Undrained	217		
-		ayer 4 sand (L3)	115	Undrained	103		
		aver 6 sand (L1)	105	Undrained	475		
		aver 6 sand (L2)	115	Undrained	336		
Support Color Turo Force	Out-Of- Failure Pile Shear Force	ayer 6 sand (L3)	115	Undrained	196		
Name Color Type Application Si	pacing (ft) Mode Orientation Orientation	Layer 7 clay	95	Undrained	400		
Soldier Pile/ Active	7.5 Shear 0 Parallel to La	ayer 8 sand (L1)	115	Undrained	827		
pile Pile (Method A)	La surface	ayer 8 sand (L2)	115	Undrained	635		
		ayer 8 sand (L3)	115	Undrained	444		
	0 0 0	Layer 9 sand	125	Mohr-Coulomb	0	35	
-50	0 50 100	150)	200			250
	Project Name TAMC - FORTAG Canyo	on Del Rey/	SR218 Segeme	ent			
	6231.0	Scenario	Liquefiab	le Layer a	t El 66.5,	kh=0.2	25
ASSOCIATES	April 2023	LUCATION	D	el Rey Oak	s, Californ	ia	

Material Name	Color	Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Ru
Fill		120	Mohr-Coulomb	0	30	
Layer 1 sand		100	Mohr-Coulomb	0	30	
Layer 2 sand (L1)		105	Undrained	232		
Layer 2 sand (L2)		105	Undrained	145		
Layer 2 sand (L3)		105	Undrained	59		
Layer 3 clay		97	Undrained	650		
Layer 4 sand (L1)		115	Undrained	331		
Layer 4 sand (L2)		115	Undrained	217		
Layer 4 sand (L3)		115	Undrained	103		
Layer 5 clay		105	Undrained	500		
Layer 6 sand (L1)		115	Undrained	475		
Layer 6 sand (L2)		115	Undrained	336		
Layer 6 sand (L3)		115	Undrained	196		
Layer 7 clay		95	Undrained	400		
Layer 8 sand (L1)		115	Undrained	827		
Layer 8 sand (L2)		115	Undrained	635		
Layer 8 sand (L3)		115	Undrained	444		
Layer 9 sand		125	Mohr-Coulomb	0	35	0
Retaining Wall No. 2		150	Infinite strength			0

-50	0 50	100	150 200	250					
	Project Name	ct Name TAMC - FORTAG Canyon Del Rey/SR218 Segement							
JACOBS	Project No. 623:	1.0	Scenario Liquefiat	ble Layer at El 72.25, ky					
ASSOCIATES	Date April 2	2023	Location	Rey Oaks, California					

Appendix H

	0.05	3						
 8		<u>.</u>	Material Name	Color	Unit Weight (lbs/ ft3)	Strength Type	Cohesion (psf)	Phi (deg)
			Layer 1 sand		100	Mohr- Coulomb	0	30
- Method Name Min Ky		\setminus	Layer 2 sand (L1)		105	Undrained	232	
GLE / Morgenstern-Price 0.053		\backslash	Layer 2 sand (L2)		105	Undrained	145	
			Layer 2 sand (L3)		105	Undrained	59	
· _		$\langle \rangle$	Layer 3 clay		97	Undrained	650	
-		\setminus	Layer 4 sand (L1)		115	Undrained	331	
		\setminus	Layer 4 sand (L2)		115	Undrained	217	
		\setminus	Layer 4 sand (L3)		115	Undrained	103	
		\setminus	Layer 5 clay		105	Undrained	500	
			Layer 6 sand (L1)		115	Undrained	475	
	W T		Layer 6 sand (L2)		115	Undrained	336	
			Layer 6 sand (L3)		115	Undrained	196	
- •			Layer 7 clay		95	Undrained	400	
			Layer 8 sand (L1)		115	Undrained	827	
			Layer 8 sand (L2)		115	Undrained	635	
			Layer 8 sand (L3)		115	Undrained	444	
-			Layer 9 sand		125	Mohr- Coulomb	0	35
~	•	o						
	U 50 Project Name		C Com	150		200	2	250
	Project No	IAMC - FORTA			/SKZIØ Segeme	nt		
	623	31.0		criariU	E	xisting Slop	e - Khy	
LIDEINTERPRET 9.027 ASSOCIATES	Date April	2023	Lo	cation	De	el Rey Oaks,	California	

Appendix I

-					_				
150		Method	Name	Min FS					
		Bishop sir	nplified	2.143					
		Janbu sim	nplified	1.968					
	2.143	Spen	cer	2.159					
	6190.00 lbs/ft								
			Material Name	Color	Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	
	w v		Fill		120	Mohr- Coulomb	0	30	
			Layer 1 sar	nd	100	Mohr- Coulomb	0	30	
			Layer 2 Sai	nd	105	Mohr- Coulomb	0	30	
			Layer 3 cla	ay	97	Undrained	650		
			Layer 4, 6 and 8 San	5 Id	115	Mohr- Coulomb	0	30	
			Layer 5 cla	ay	105	Undrained	500		
		°	Layer 7 cla	ay	95	Undrained	400		
			Layer 9 sar	nd	125	Coulomb	0	35	
			Retaining Wall No. 1	g 2	150	Infinite strength			
	0	0							
		100		450		200			250
	Project Name TAMC -	FORTAG Ca	nyon Del F	Rey/SR218	3 Segement	200		4	200
JACOBS	Project No. 6231.0		Scenar	io	Global Stal	bility - Circ	ular Failur	re	
SLIDEINTERPRET 9.027 ASSOCIATES	Date April 2023		Locatio	on	Del Re	ey Oaks, Ca	lifornia		

Appendix J

Comment and Response Form Review of Draft Foundation Report

McMillen Jacobs Associates, "Foundation Report for Bridge, Transportation Agency of Montery County, Fort Ord Regional Trail & Greenway - Retaining Wall No. 1, Del Rey Oaks,

California" dated March 7, 2023

Phase/Sub-Object 1/100 05-MON-218 EFIS 052000029 EA 05-1M570

Reviewer's Name/Unit	Comments/Questions Please reference document section (e.g., paragraph, page #, etc.)	Circulator's Response to Comments/Questions
Chris McMahon/59-3660	Signature Block: The signature block on the draft report does not include a California-licensed Professional Geologist (PG) or Certified Engineering Geologist (CEG). A PG (or CEG) must sign and stamp the final version of this report.	added
Chris McMahon/59-3660	Section 3.7.3 Fault Rupture: This section discusses several faults (Reliz, Monterey Bay- Tularcitos, Chupines, and Seaside, but does not clearly state where any of them are located relative to the planned structure. Please revise to indicate whether or not the project site is located within a mapped Alquist-Priolo Earthquake Fault Zone (or other fault hazard zone), or within 1,000 feet of an unzoned fault that is Holocene or younger in age, and note if the planned structure is susceptible to fault rupture hazards per Caltrans Memo To Designers 20-10 (MTD 20- 10).	revised
Chris McMahon/59-3660	Section 3.7.4 Liquefaction: The results of the analysis should be tabulated in this section. Additionally, there are multiple instances of "Error! Reference source not found." in the text of the reviewed PDF.	revised
Chris McMahon/59-3660	Section 4.2.1 Global Stability Analysis: The results of the analysis should be tabulated in this section.	revised
Chris McMahon/59-3660	Section 4.2.2 Liquefaction-Induced Lateral Spreading Mitigation: The results of the analysis should be tabulated in this section. Additionally, this section is incomplete, and does not include the mitigation recommendations.	Result in Table 14. Section 6.2.2 was revised per our discussion with Caltrans
Chris McMahon/59-3660	Section 4.2 Design Considerations: Liquefaction (outside of lateral spreading) is not discussed, despite the potential for nearly a half-foot of settlement?	See Section 6.2.1
Justin Anderson/59-3660	General Note: The report sections should match the sections outlined in the Geotechnical Manual - Foundation Reports for ERS. This includes organizing the report material as recommended	revised
Justin Anderson/59-3660	Section 3.1 Geologic Unit Mapping: References a Section 0, which doesn't exist	I do not see Section 0 referenced in Section 3.1. This may be an error. We've fixed all the referencing errors
Justin Anderson/59-3660	Section 3.5 Groundwater Level: Please provide a recommended groundwater table elevation for design	revised
Justin Anderson/59-3660	Section 3.7.1 Site Seismic Parameters: Based on the provided boring logs, the suggested VS30 seems unlikely. Please calculate the shear wave velocity.	revised
Justin Anderson/59-3660	Section 3.7.2 Ground Motion Parameters: Mean Site-to-Fault Source Distance is based on all nearby faults, but the note suggests it's based on the San Gregorio Fault. Please clarify	It was based on ARS online tool, so it was based on all nearby faults.

Reviewer's Name/Unit	Comments/Questions Please reference document section (e.g., paragraph, page #, etc.)	Circulator's Response to Comments/Questions
Justin Anderson/59-3660	Section 4.1 Ground Material Properties, Models, and Loading: kh is presented here as 0.3g, whereas in the lateral spreading section, kh is presented as 0.25g. Which is correct?	kh calculated per AASHTO Section 11.6.5.2 was 0.28g and I rounded up to 0.3g. I'll revise this to 0.28g. Per AASHTO Sections 11.6.5.2, kh is equal to 0.5kh0, where kh0 = Fpga PGA. Fpga in our case is 1.1 per ASCE 7-16 (Site Class D with PGA of 0.5). 0.25g used in lateral spreading section is for the stability analysis per Caltrans guideline. Based on my understanding, 0.28g considered factor of safety of 1.1 while 0.25g is for factor of safety of 1.
Justin Anderson/59-3660	Section 4.1 Ground Material Properties, Models, and Loading: Please provide arching factors	Provided in the last paragraph for Section 6.1.
Justin Anderson/59-3660	Section 4.2 Retaining Wall No. 1 Design Considerations: is there a minimum lagging embedment that you recommend?	There is no minimum lagging embedment into the ground. Laggings are only to support the active earth pressures from retained soil.
Justin Anderson/59-3660	Section 4.2.2 Liquefaction-Induced Lateral Spreading Mitigation: Suggest checking multiplen sliding block methods as outlined in AASHTO LRFD Bridge Design Specifications, 8th Edition	Analyses performed using two methods.
Justin Anderson/59-3660	Section 4: Are there any notes for specifications? Perhaps expected difficult pile installation?	Added